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Abstract:

A central goal of neuroscience is to uncover neural 
representations that underlie sensorimotor and cognitive 
processes. Artificial neural networks (ANN) can provide 
hypotheses about the nature of neural representations. 
However, in the domain of language, multiple ANN 
models provide a good match to human neural 
responses. To dissociate these models, we devised an 
optimization procedure to select stimuli for which model 
representations are maximally distinct. Surprisingly, we 
found that all models struggle to predict brain responses 
(fMRI) to such stimuli. We further a) confirmed that these 
sentences are not outliers in terms of linguistic 
properties and that neural responses to these sentences 
are as reliable as to random sentences, and b) replicated 
this finding in another, previously collected, dataset. 
Stimuli for which model representations differ can be 
used to uncover dimensions of ANN-to-brain alignment, 
and serve to build more brain-like computational models 
of language.  
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representations 

Introduction 

 Successful behavior relies on the brain's ability to 
construct the statistical representations of the 
environment that can guide actions. Characterizing 
these representations is a critical component in 
understanding brain computations (Simoncelli & 
Olshausen, 2001). One approach to uncovering neural 
representations is to build computational models that 
perform some behavior of interest, measure the 
models’ alignment with brain activity, and—in the 
presence of good alignment—use the models for 
generating hypotheses  about the structure of neural 
representations (Bao et al., 2020). This approach has 
recently helped characterize perceptual and motor 
processes across domains (Kell et al., 2018; Sussillo et 
al., 2015; Yamins et al., 2014) and has promise for 
understanding higher-level cognitive processes. For 
example, for language comprehension, a number of 
ANN models have been shown to be able to capture 
human brain activity (e.g., (Caucheteux & King, 2022; 
Goldstein et al., 2022; Schrimpf et al., 2021). However, 
what aspects of the models’ representations of 
linguistic strings lead to good model-to-brain alignment 
remains poorly understood. 

One way to make progress is to treat different ANN 
models as competing hypotheses and test their 
alignment with the brain (Golan et al., 2023; Schrimpf 
et al., 2020). To do so effectively requires stimuli that 
elicit distinct representations across models. Here, we 

devised an optimization procedure (Figure 1) to select 
a stimulus set that would separate several top-
performing ANN language models at the level of their 
representations. We then tested these models for their 
ability to capture brain responses to these stimuli, and 
we used a similar approach on an existing dataset via 
stimulus sub-sampling. 

Methods 

Stimulus optimization: We selected 7 high-
performing ANN language models with diverse 
architectures from a prior study (Schrimpf et al., 2021): 
roberta-B; xlnet-L-cased; bert-L-uncased-whole-
word-masking; xlm-mlm-en-2048; gpt2-xl; albert-
xxlarge-v2; and ctrl models. We extracted these 
models’ representations for a set of 8,409 sentences 
(selected from the Universal Dependencies corpus (de 
Marneffe et al., 2021) constraining sentences to be 
between 6 and 19 words long. We used a 
representational dissimilarity matrix (RDM) to 
characterize each model's representation of these 
sentences, and measured model-to-model dissimilarity 
via second-order RDMs for each model pair. In the 
critical step, we iteratively sampled and substitute 
stimuli to find a subset of n=200 stimuli that maximized 
the distances among the models (𝑆!"#; Figure 1A-C). 
Prior to data collection, we examined the selected 
sentences’ linguistic properties to ensure that they are 
not outliers / ‘edge cases’ in any of the key dimensions 
of linguistic variation (Figure 1D), nor model 
representations (not shown here). 

Figure 1: (A) Stimulus optimization procedure; (B) Inter-
model distance for the optimized sentences (orange 
dots) vs. random sentences (blue dots); (C) Inter-model 
distance for optimized (top right triangle) vs. random 
(bottom left triangle) sentences; (D) Distributions of 
linguistic features for optimized and random sentences 
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(orange and blue curves, respectively) shown against 
the distribution for the entire corpus (grey). 

Experimental design: We recorded auditory versions 
of the sentences and presented them in fMRI to 8 
participants (2-6 seconds per sentence with 4 second 
ISI). We extracted responses to each sentence from the 
language areas of each participant (identified with an 
independent localizer; Fedorenko et al., 2010). 

Encoding models: Following (Schrimpf et al., 2021), 
we built a cross-validated regression for each model 
from unit activations to voxel-level sentence responses 
(Figure 2A). We then calculated the average correlation 
between predicted and actual voxel responses for a 
left-out set of stimuli and normalized it by a ceiling 
computed from inter-subject similarity. 

Results 

ANN models struggle to predict neural responses 
for the optimized stimuli. We first compared the 
models’ performance on the optimized stimuli relative 
to the Pereira et al. (2018) benchmark (used in Schrimpf 
et al., 2021). Contra our expectation that these 
optimized stimuli would reveal that some ANN models 
are better able to capture human neural responses than 
others, we found that all models show poor ability to 
predict brain responses to these sentences (Figure 2B, 
orange bars; cf. blue bars, which correspond to 
performance on Pereira2018 sentences). Importantly, 
response reliability, as reflected in the ceiling value, 
was similar Pereira2018 dataset (Schrimpf et al., 2021), 
ruling out the possibility that the responses are simply 
less consistent / noisier (Figure 2A). 

The results are robust and generalize to another 
dataset. To ensure the robustness of our findings, we 
used a similar approach on an existing fMRI dataset 
(Pereira et al., 2018), where we sub-sampled stimuli 
(n=100 from the full set of 243 and 384 sentences in 
the two experiments that comprise Pereira2018) in a 
similar way as we did from a large corpus for the main 
experiment. In addition, we also sub-sampled a set of 
100 sentences such that their representations were 
maximally similar across models (𝑆!$%), and a set of 100 
random sentences (𝑆&%'). This sub-sampling was 
successful (Figure 2C). If the optimization process 
leads to different levels of model-to-brain alignment, 
then we expect a gradient pattern with best model 
performance on 𝑆!$%, intermediate performance on 
𝑆&%', and worst performance on 𝑆!"#  sentences. This 
is the pattern we observed (Figure 2D). This finding 
strengthens the results from the main experiment and 

establishes inter-model distance optimization as a new 
method to control the amount of model-brain 
alignment. 

Figure 2: (A) The encoding analysis (top) and subject 
reliability measure (bottom); (B) Model performance on 
the optimized 𝑆!"#sentences (orange) and the original 
Pereira2018 benchmark (blue); (C) Distribution of inter-
model distances (each line is a model pair) for the 
sentences sub-sampled from Pereira2018 (𝑆!$%purple; 
𝑆&%'blue; 𝑆!"#orange); (D) Model performance on 
subsets of sentences from Pereira2018 selected 
randomly (blue), or to maximize (orange) or minimize 
(purple) inter-model representational distances. 

Discussion 

We developed a method for differentiating ANN 
models’ representational spaces as needed for 
generating and testing hypotheses about the 
representational structure of the human language 
network. This approach led to the discovery that a 
subset of natural sentences constitute a ‘blind spot’ for 
multiple ANN language models, such that they struggle 
to predict human neural responses to those sentences. 
This finding may therefore reveal features that are 
differentially represented by the models vs. the brain. 
We also found that sentences that are represented in a 
similar way by multiple models lead to stronger model-
to-brain alignment, which may help capture aspects of 
sentence representation that are shared between the 
models and the brain. Understanding the features of 
stimuli that lead to strong vs. poor model-brain 
alignment will reveal dimensions that are used by 
language models to encode linguistic input and can 
lead to a better understanding of human neural 
computations that underlie language comprehension. 
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