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Abstract
Listeners recognize and integrate words in everyday
speech by combining expectations about upcoming con-
tent with incremental sensory evidence. We present a
computational model of word recognition and its down-
stream neural correlates, and fit this model to explain EEG
signals recorded as subjects listened to a fictional story.
The model reveals distinct neural processing of words de-
pending on whether or not they can be quickly recognized.
While all words trigger a neural response characteristic of
probabilistic integration — voltage modulations predicted
by a word’s surprisal in context — these modulations are
amplified for words which require more than roughly 100
ms of input to be recognized. We observe no difference in
the latency of these neural responses according to words’
recognition times. Our results support a two-part model of
speech comprehension, combining an eager and rapid pro-
cess of word recognition with a temporally independent
process of word integration.
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The N400 ERP is a centro-parietally distributed negative
voltage modulation measured at the scalp by electroencephalo-
gram (EEG) which peaks around 400 ms after the onset of a
word (Kutas & Hillyard, 1984). Studies of the N400 in natural-
istic reading and listening suggest that the amplitude of this
response measures the difficulty of integrating a recognized
word with a model of the broader linguistic context, and that this
amplitude is well predicted by objective estimates of a word’s
contextual probability (Frank, Otten, Galli, & Vigliocco, 2015;
Heilbron, Armeni, Schoffelen, Hagoort, & De Lange, 2022).

This paper investigates the relationship between the N400
response and upstream cognitive mechanisms of word recog-
nition in naturalistic speech comprehension. First, we ask
whether there is a regular temporal relationship between the
process of word recognition and the integration processes ob-
servable in neural data. Second, we ask whether this neural
response differs according to words’ recognition times in ways
not captured by mere latency differences.

Model
We first design a cognitive model of the dynamics of word
recognition, capturing how a listener forms incremental beliefs
about the word they are hearing as a function of the linguistic
context C and some partial acoustic evidence I≤k. We formal-
ize the listener’s belief in the intended word wi as a Bayesian
posterior (Norris & McQueen, 2008):

P(wi |C, I≤k) ∝ P(wi |C) P(I≤k | wi) (1)

which factorizes into a prior expectation of the word wi in con-
text (first term) and a likelihood of the partial evidence of k
phonemes I≤k (second term). We use a neural network lan-
guage model (GPT Neo 2.7B; Black, Gao, Wang, Leahy, &
Biderman, 2021) for the prior. The likelihood is a noisy-channel
phoneme recognition model:

P(I≤k | wi) = ∏
1≤ j≤k

P(I j,wi j)
1
λ (2)

where per-phoneme confusion probabilities are drawn from
prior phoneme recognition studies (Weber & Smits, 2003) and
reweighted by a temperature parameter λ.

We evaluate this posterior for every word with each incre-
mental phoneme, from k = 0 (no input) to k = |wi| (conditioning
on all of the word’s phonemes). We say a word is recognized
at a phoneme 0 ≤ k∗i ≤ |wi| when this posterior exceeds a
confidence threshold parameter γ.

We take a word’s recognition time τi to be some fraction
α of the way through the span of the k∗i -th phoneme; in the
special case where k∗i = 0 and the word is confidently identified
prior to acoustic input, we take τi to be a fraction αp of its first
phoneme’s duration (where α, αp are free parameters fitted
jointly with the rest of the model).

We next define a set of candidate linking models which de-
scribe how word recognition times τi affect neural responses.
These models are variants of a temporal receptive field model
(TRF; Crosse, Di Liberto, Bednar, & Lalor, 2016), which pre-
dicts multivariate scalp EEG data as a convolved linear re-
sponse to lagged features of the stimulus. We define two time
series: Xt , control features of the auditory stimulus, and Xv,
features of words in the stimulus. We assume that Xt causes a
neural response independent of recognition times τi, while the
neural response to features Xv may vary as a function of τi.

We consider three distinct TRF models linking the cognitive
dynamics of word recognition to neural responses (fig. 1): 1)
a unitary response, aligned to τi (shift model); 2) a variable
response by τi, aligned to word onset (variable model); 3) a
unitary response aligned to word onset (baseline model). In
the variable model, we estimate independent TRFs for words
as a function of their recognition times. For a tercile split of
words based on recognition time τi into “early,” “intermediate,”
and “late” bins, we learn distinct TRF parameters mapping
word features Xv in each quantile to the neural response.

We analyze EEG data recorded as 19 subjects listened
to one hour of a fictional story, published in Heilbron et al.
(2022). We follow the authors’ preprocessing methods and
control predictors Xt . Our word-level feature vectors Xv ∈
Rnw×2 consist of 1) word surprisal in context, computed using
GPT Neo 2.7B (Black et al., 2021), and 2) word log-frequency
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Figure 1: Possible neural models linking word recognition times
τi to neural modulations by word-level features Xv.
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Figure 2: Inferred distribution of word recognition times.
Salmon lines mark a tertile split by recognition time; yellow
regions mark median phoneme durations. An example word
from the data, harpoon, is aligned above the graph.

(Brysbaert & New, 2009).
We infer the parameters of the cognitive model jointly with

within-subject neural TRF parameters in order to minimize EEG
prediction loss, and evaluate models on held-out EEG data.

Results

The baseline model exceeds the performance of an ablated
model without word-level features Xv (t = 4.63, p < 0.001),
and recovers a naturalistic N400 response. The variable model
in turn significantly exceeds this baseline (t = 6.57, p < 10−5),
while the shift model does not (t = 0.515, p > 0.6).

We next examine the fitted variable model’s estimates of
the cognitive dynamics of word recognition and the neural
correlates of word integration. The variable model fit predicts
(Figure 2) that a lower third of “early” words are recognized prior
to 32 ms, and an upper third of “late” words are recognized
after 97 ms post word onset. This finding aligns with prior work
suggesting that listeners frequently pre-activate features of
lexical items far prior to their acoustic onset in the stimulus
(Goldstein et al., 2022; Wang, Kuperberg, & Jensen, 2018).
Figure 3 shows the variable model’s parameters describing a
neural response to word surprisal for each of three recognition
time quantiles, time locked to word onset. We see that late-
recognized words show an exaggerated negative modulation
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Figure 3: Centro-parietal signal modulations by word surprisal
vary by recognition time. Average over subject coefficients;
error regions denote s.e.m. (n = 19). Inset: spatial distribution
of surprisal modulations averaged for each recognition time
quantile within vertical gray regions.

due to word surprisal (green line peak minus blue line peak in
the shaded region; within-subject paired t =−5.14, p < 10−4).
However, there is no significant difference in the latency of
the N400 peak for words recognized early vs. late (green line
peak time minus blue line peak time; within-subject paired
t = 1.391, p > 0.1).

Discussion

Our analyses reveal two major findings about the link between
word recognition and integration: 1) The onset of word inte-
gration effects does not vary as a function of word recognition
times. 2) Neural integration responses show a different mor-
phology (with exaggerated modulations by surprisal) for words
recognized late after their acoustic onset.

These results are consistent with a two-part model of speech
comprehension (van den Brink, Brown, & Hagoort, 2006): Lis-
teners continuously update posterior beliefs about the word
being heard, loading incremental interpretations into a memory
buffer. The recognition time estimate τi predicts when this
buffer will resolve into a clear lexical inference.

A second integration process reads the contents of this
buffer and merges it with representations of the linguistic con-
text. Our latency results show that this process happens inde-
pendently of a listener’s confidence in their lexical interpreta-
tions, and is instead time-locked to word onset. This integration
process thus exhibits two modes depending on the buffer’s con-
tents: one standard, in which the buffer is clearly resolved, and
one exceptional, in which the buffer contents are still ambigu-
ous, and additional inferential or recovery processes must be
deployed in order to proceed with integration. Future research
should address what drives the regular and independent timing
of integration processes (cf. Federmeier & Laszlo, 2009), and
further characterize the mode of “exceptional” word integration.
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