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Abstract

The exploration-exploitation trade-off, balancing the ac-
quisition of new information with the utilization of known
resources, is a fundamental dilemma faced by all adaptive
intelligence. Despite our understanding of models based
on normative principles, the diverse explore-exploit be-
haviors of natural intelligence remain elusive. Here, using
neural network behavioral modeling and state space anal-
ysis, we examined the diverse human exploration behav-
iors under a novel two-armed bandit task called Chang-
ing Bandit, designed to simulate real-world environmen-
tal volatility where exploration becomes essential. Ex-
amining behavior in the belief state space of this task,
we characterized the disparities across artificial agents
with decision boundaries. To extend this analysis to hu-
man data, a circumstance where choices are too sparse
in the belief state space, we trained a recurrent neural
network (RNN) model to predict humans’ choices given
past observations. This RNN model outperforms all ex-
isting cognitive models. Probing the RNN’s decision
boundaries, we found substantial individual differences
that evade classical cognitive models. Additionally, our
RNN revealed a tendency of “high-stay, low-shift” used
by humans in response to higher environmental volatil-
ities. Our work offers a promising approach for investi-
gating diverse decision-making strategies in humans and
animals.

Keywords: explore-exploit dilemma; recurrent neural network;
state space analysis; computational modeling

Introduction

Exploration and exploitation are two widely studied elements
in decision-making processes (Wilson, Geana, White, Lud-
vig, & Cohen, 2014; Wilson, Bonawitz, Costa, & Ebitz, 2021).
However, the diversity in human exploration behavior re-
mains challenging to characterize and comprehend. Here we
present a novel approach combining neural network modeling
and state space analysis to investigate human exploration in
the Changing Bandit task. By examining decision boundaries
of several artificial agents and a RNN model trained to predict
human choices, we uncover numerous commonalities and in-
dividualities in human exploration.

Results

The Changing Bandit Task. In this task, agents make a se-
ries of choices between two options that payout different re-
wards (Fig. 1a). The reward from each option stays constant
for several trials, then changes randomly, abruptly, and inde-
pendently (with the hazard rate 4 in each trial) to a new value
sampled from a uniform distribution (from 1 to 99 points). Un-
like classic reversal learning tasks, a change in the reward of
one option does not imply that the reward of the other option
has changed. The longer agents exploit the same option, the
more likely the other option has changed and the more uncer-
tain they should be about its reward. Therefore, to maximize

total rewards, the agent should constantly assess which op-
tion is better: exploiting the current known option or exploring
the other more uncertain option.

State space analysis of the task. Optimal performance in
the task (Fig. 1b) is achieved by solving Bellman’s equation
in a three-dimensional state space that captures the belief
state of the task. The dimensions of this space are the reward
from the option just exploited ("Current Reward”), the last re-
ward from the other option ("Other Reward”), and the number
of successive stay trials since last explored (“# Successive
Stays”, or “SS”).

Optimal model-based agent. The optimal behavior is a de-
terministic function of the belief states. This agent explores
or exploits depending on where the current state is relative
to a Decision Boundary (DB) that cuts through the three-
dimensional belief space (Fig. 1c, f). Benefiting from the en-
coding of the transition structure between belief states, it can
gain information bonuses via exploration to maximize the fu-
ture expected reward. Therefore, the DB of the model-based
agent shows that the model will explore in some situations
even in which the immediate expected payoff from exploring
is less than exploiting (gray region in Fig. 1c).

Myopic model-free agent. This agent updates the chosen
action value with the immediate reward and gradually forgets
the unchosen action value. It is mathematically equivalent to
a short-sighted model-based agent that only maximizes its
immediate reward, not its long-term expected future reward.
Thus, this model has a more conservative DB that does not
favor exploration (Fig. 1c, f). The discrepancy in the DB be-
tween model-based and model-free models increases when
the other reward is more uncertain (i.e., a larger SS).

Meta reinforcement learning (meta-RL) model. Since the
meta-RL framework has been well-demonstrated to capture
animals’ reinforcement learning at both the behavioral and
neural levels (Wang et al., 2018), we also analyze a meta-RL
agent trained to maximize their task rewards. Our meta-RL
agent has a GRU (gated recurrent unit) network with 100 hid-
den units, trained with the Advantage Actor-Critic (Wu, Mansi-
mov, Grosse, Liao, & Ba, 2017). Our analysis shows that the
meta-RL agent has near-optimal performance (Fig. 1b) but
with a strategy substantially different from the optimal agent
(Fig. 1f). As SS increases, it gains information bonuses by
expanding the shift region.

RNN model reveals commonalities and individualities in
human behavior. A total of 29 participants underwent 3
blocks of 1500 trials each, with one block dedicated to each
hazard rate (h = 0.1, 0.2, 0.4), following a 300-trial practice
session. Obtaining DBs for human behavior is challenging
because the human choice data are too sparse in the belief
state space. Thus, we train a GRU network (50 hidden units)
to predict humans’ behavior given history (Dezfouli, Griffiths,
Ramos, Dayan, & Balleine, 2019), equipped with a subject
embedding layer to capture individual differences (Song, Niv,
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Figure 1: a). Subjects choose between two options. Rewards from each option are constant for several trials but change
randomly and independently in some trials (hazard rate /). b) Task performance of artificial agents and humans (MB: model-
based; MF: model-free; Meta-RL: meta reinforcement learning) across different hazard rates. Dashed lines indicate the optimal
performance. ¢) Comparison of the optimal model-based agent’s decision boundaries (DBs; separating gray and blue) and the
myopic model-free agent’s DBs (separating gray and red) for 4 = 0.1. The two agents both shift (explore) in the red region and
stay (exploit) in the blue region for SS = 1 (left) and SS = 10 (right). In the gray region, the model-based agent explores since it
considers the expected future value, while the model-free agent exploits due to short-sightedness. d) The structure of the RNN
model with subject embedding, receiving the current observation (s;, the hazard rate), last-trial action a;_1, last-trial reward r;_1,
and the current subject embedding as inputs. e) The negative log likelihood (NLL) of models fitted to human subjects (the lower
the better). The RNN ourperforms existing cognitive models in predicting human choices given history. LR, logistic regression;
MF, model-free; MB, model-based. f) The decision boundaries for different SS across agents (k = 0.1). g) The environmental

volatility (hazard rate) influences shift/explore probability provided by the subject-simulating RNN.

& Cai, 2021). Unlike classical cognitive models, RNNs have a
stronger capacity to characterize human decision-making pro-
cesses without manually engineering the architecture or mak-
ing explicit assumptions for underlying cognitive processes.
Our RNN (Fig. 1d) outperms the best known cognitive models
in predicting human choices (Fig. 1e, all models evaluated by
negative log likelihood (NLL) via cross-validation).

Our RNN model’s predictive performance substantially ben-
efits from subject embedding (reducing NLL by 0.06 com-
pared to a RNN without subject embedding). We found that
the subject-prompted RNN’s task performance strongly cor-
relates with subjects’ task performance (r = 0.69, p < 107%),
and that principal components (PCs) of subject embeddings
encode the subject’s sensitivity (loadings in the logistic regres-
sion) to last-trial actions (r = —0.62, p < 10~* for PC1) and
last-trial rewards (r = 0.58, p < 10~* for PC3). These results
suggest that our RNN model with subject embedding has cap-
tured subject-specific patterns.

We then characterized subject-specific strategies using
DBs provided by the RNN. For instance, in two example sub-
jects’ strategies (Fig. 1f, rightmost), we found that RNN-
Subject-2 shows a DB similar to RNN-subject-1 for SS = 1, but
a DB with narrower shift/exploration region than RNN-Subject-
1 as SS increases. This result indicates that Subject 2 has a
greater tendency to stay on the current action for larger SS.

Finally, we compared the subjects’ tendency to explore (ac-
tion probabilities provided by the RNN) in environments with
low and high volatilities (Fig. 1g). We found that, when the
current reward is low (i.e., below 50), subjects showed a ten-
dency to explore (shift) more frequently in more volatile en-
vironments than in less volatile ones. As the current reward
increases, this tendency gradually shifts towards exploitation
(stay) on average, though with a growing variance). This find-
ing suggests that our RNN can capture the tendency for hu-
mans to exhibit a “high-stay, low-shift” behavior in response
to increasing environmental volatility, which classical models
have failed to capture.

Conclusion

Characterizing behaviors in naturalistic sequential decision-
making tasks is challenging, partially due to the complicated
and often idiosyncratic dependency on prior experience. Tra-
ditional computational models usually fall short in captur-
ing intricacies in humans’ and animals’ exploration behav-
ior, neglecting important behavioral patterns. In contrast, our
method effectively uncovers these nuanced exploration pat-
terns. Our work contributes to the growing field of research on
human and animal decision-making strategies and provides a
promising approach for future studies of exploration behavior
in natural and machine intelligence.
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