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Abstract

Human visual perception captures the 3D shape of ob-
jects. While convolutional neural networks (CNNs) resem-
ble some aspects of human visual processing, they fail to
explain human shape perception. A new deep learning
approach, 3D neural fields (3D-NFs), has driven remark-
able recent progress in 3D graphics and computer vi-
sion. 3D-NFs encode the geometry of objects in a contin-
uous, coordinate-based representation. Here, we investi-
gate whether humans and 3D-NFs make similar trial-level
3D shape judgments on match-to-sample tasks with ren-
dered stimuli. In Experiment 1, 3D-NF behavior is more
similar to human behavior than standard CNNs trained
on ImageNet, regardless of whether lure objects were a.)
from a different category than the target, b.) the same
category as the target, or c.) matched to have the most
similar 3D-NF to the target as possible. In Experiment 2,
to accentuate differences between humans and 3D-NFs
compared to CNNs, five difficulty conditions were defined
based on the performance of 25 ImageNet CNNs. Again,
we find 3D-NF and human behavior are well aligned, with
both showing high accuracy even for trials where CNNs
fail. Overall, 3D-NFs and humans show similar patterns of
3D shape judgements, suggesting 3D-NFs as a promising
framework for investigating human 3D shape perception.

Keywords: 3D shape perception; 3D neural fields; psy-
chophysics; light field network; deep learning

Introduction

The human visual system demonstrates a remarkable ca-
pacity to perceive the three-dimensional (3D) shape of ob-
jects. Decades of research in vision science have provided
insights into the mechanisms underlying human 3D shape
perception (Todd, 2004). While convolutional neural net-
works (CNNs) have shown similarities with visual processing
in the primate brain (Yamins et al., 2014; Kriegeskorte, 2015),
they still perform worse than humans in 3D shape process-
ing tasks (Kubilius, Bracci, & Op de Beeck, 2016; Geirhos et
al., 2018; Bonnen, Yamins, & Wagner, 2021). What compu-
tational mechanisms does human perception leverage to re-
cover high-fidelity representations of 3D geometry? A new
deep learning technique, 3D neural fields (3D-NFs), have
driven rapid recent developments in 3D graphics and com-
puter vision. In 3D graphics, 3D-NFs are used to encode the
geometry of an individual scene from 2D images from many
viewpoints (Mildenhall et al., 2021). In 3D computer vision,
conditional 3D-NFs can compute continuous 3D volumetric
functions from images using encoder-decoder architectures
(Yu, Ye, Tancik, & Kanazawa, 2021; Sitzmann, Rezchikov,
Freeman, Tenenbaum, & Durand, 2021). Here, to explore po-
tential computations underlying human 3D shape perception,
we test the alignment between 3D-NFs and human behavior
using 3D match-to-sample tasks.

Methods

3D Light Field Networks

Figure 1: Schematic of the 3D-NF architecture.

The 3D-NFs used in the following experiments are variants
of 3D Light Field Networks (Sitzmann et al., 2021) (Fig. 1).
The essence of a neural field is a neural network that encodes
a continuous function from coordinates to properties. We im-
plement the neural field as a multi-layer perceptron (MLP)
with eight layers. For light field networks, the neural field en-
codes the RGB value for every possible ray through a sphere
surrounding each object. The neural field’s input is a set of
plücker coordinates, which define a ray through a scene, and
the output is the RGB value of that ray.

The model pipeline follows three steps. 1. Infer a set of
shape latents (256D) from an RGB input image. The image is
provided as input to a resnet50 CNN encoder, and latents are
regressed out of the final convolutional layer with a linear map-
ping. The CNN encoders used for inference are either pre-
trained on imagenet and finetuned when learning the 3D-NF
(finetuned) or learned from scratch with the 3D-NF (learned).
2. Map from latents to weights for the 3D-NF MLP using a hy-
pernetwork (an MLP that outputs the weights of another neural
network). 3. Given a novel camera position, query rays from
the 3D-NF to render an image.

The 3D-NFs are trained with a multi-view loss: given an
input RGB image from one viewpoint, the model objective is
to render the same object from a different viewpoint (Fig. 1,
Forward Pass + Rendering). The loss is the MSE between
the predicted and ground-truth novel-viewpoint image. At test
time (Fig. 1, Inference), an image is provided to the trained
model and latents, autodecoder intermediate units, and the
weights of the final 3D-NF are extracted for 3D tasks.

3D shape judgmenets in humans and models

To quantify 3D shape judgements in humans and models, we
use a match-to-sample task with rendered object stimuli. We
use two datasets of objects: ShapeNet (Chang et al., 2015),
a large collection of manmade shapes from 13 categories and
ShapeGen (https://github.com/jvanaken1/ShapeGen),
a shape generator that creates abstract objects without an
category structure.
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Human Psychophysics For a given trial (Fig. 2), three
images are shown: a sample image of a rendered object
is presented with two possible images to match. The tar-
get image depicts the same object as the sample from a
different random viewpoint (viewpoints sampled from a 360
sphere), and the lure image shows a different object. The
task for human participants is to identify the matching target
image. All human data were collected online using Prolific
(https://prolific.co/).

Model Psychophysics For models, we use a similarity-
based measure to complete the task. Some set of model fea-
tures (CNN unit activity, 3D-NF unit activity, 3D-NF weights)
are extracted for each of the three images in a given trial. Co-
sine similarity is computed b/w the sample/target and sam-
ple/lure features, and if the sample/target features are more
similar than the sample/lure features the trial is recorded as
correct. All human and model psychophysics experiments use
a variant of this task, and the primary manipulations relate to
how the target-lure object pairings are selected.

Figure 2: Two example trials (L: ShapeNet, R: ShapeGen)

Results
Experiment 1: 3D-NFs and humans make similar 3D
shape judgements for manmade objects
Stimuli were rendered from 13 categories of the ShapeNet
dataset. Object pairs for match-to-sample trials had three con-
ditions: 1. Target-lure objects from different categories, 2.
Target-lure objects were from the same category, 3. Target-
lure objects were matched to be as similar as possible in the
3D-NF weight-space. We compared human behavior (n=120)
to 3D-NFs and 25 ImageNet CNNs by computing the co-
sine similarity across trials between each model’s task per-
formance and human accuracies.

Figure 3: Results for Exp. 1. Dotted lines show human split-
half reliability, dashed lines show human leave-one-subject-
out reliability, and faint lines are leave-one-subject-out reliabil-
ities for individual participants.

For between-categories trials, both humans and 3D-NFs
were at ceiling performance and thus had ceiling trial-level be-

havioral similarity. CNN similarity to behavior improved over
layers, but fell short of the noise-ceiling. For within-category
trials, 3D-NFs showed high similarity to humans, exceeding
the noise ceiling. For 3D-shape-matched trials, the only model
to reach the noise-ceiling was the 3D-NF with a fine-tuned
CNN encoder. Overall, we see that 3D-NF field models closely
track human 3D shape judgements regardless of how target-
lure pairs are matched. See Fig. 3 for results.

Experiment 2: 3D-NFs and humans make similar 3D
shape judgements across CNN-defined difficulties

To highlight CNN failure cases relative to humans and 3D-
NFs, we use the CNN model zoo to identify match-to-sample
object-pairs that fall into 5 difficulty bands (ranging from an
average CNN accuracy of .18 for the most difficult condition
to .6 for the easiest condition). We ran two versions of the
experiment with different stimuli: 1. manmade ShapeNet ob-
jects and 2. abstract ShapeGen objects. The veresion with
abstract objects ensures that any similarity between human
and 3D-NF behavior is not simply driven by category structure.
For both manmade (n=200) and abstract (n=200) objects, we
find that humans and 3D-NFs are largely unaffected by the
CNN-defined conditions, displaying high performance even in
cases where CNNs fail. 3D-NFs and humans again showed
high trial-level similarity across conditions (Fig. 4). The 3D-
NF with a fine-tuned encoder reached the stringent split-half
noise-ceiling for both manmade and abstract shape tasks.

Figure 4: Results for Experiment 2. See Fig. 3 caption for
human reliability explanation.

Conclusion

We find that 3D-NFs and human observers make similar 3D
shape judgments regardless of target-lure similarity (Exper-
iment 1) and for difficult CNN-defined trials (Experiment 2).
In all comparisons, 3D-NFs more closely resembled human
behavior than more standard ImageNet CNNs. To our knowl-
edge, these are the first reports of models that compute con-
tinuous 3D representations from images that match human-
level performance and consistency, suggesting that 3D-NF
models are a promising direction for exploring behavioral and
neural 3D shape processing.
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