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Abstract
To navigate the immediate visual environment, humans
use a variety of locomotive actions, such as walking,
swimming or climbing. How does the brain represent
such environmental action affordances and which visual
features drive these representations? Here, we compared
representations of visual properties derived from human
annotations, fMRI measurements, and convolutional neu-
ral networks (CNNs) on a new set of real-world scenes
that afford distinct locomotive actions in a diverse set of
indoor and outdoor environments. Representational sim-
ilarity analysis shows that scene-selective brain regions
represent information about action affordances as well
as materials and objects. In contrast, CNNs trained on
scene classification show comparatively lower correla-
tion with action affordances, instead most strongly repre-
senting global scene properties. Together, these results
suggest that specialized models that incorporate action
affordances may be needed to fully capture representa-
tions in scene-selective visual cortex.
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Introduction
How we represent visual scenes is a question central to neuro-
science, cognitive psychology and AI. While scenes are often
conceptualized as collections of objects or surfaces, recent
work suggests that scene understanding is strongly shaped
by perceived action possibilities (Greene, Baldassano, Es-
teva, Beck, & Fei-Fei, 2016). This idea goes back to Gibson
(1977) who introduced the term affordances to describe ac-
tion possibilities an environment offers an individual. Where
and how might such affordances be computed in the brain?

Scene perception in humans is characterized by the ac-
tivation of three scene-selective regions (Epstein & Baker,
2019). Bonner and Epstein (2017) implicated one of these
regions, OPA, in the representation of navigable space afford-
ing walking in indoor environments, and linked these repre-
sentations to visual features computed in mid-to-high level lay-
ers of place-trained CNNs (Bonner & Epstein, 2017). How-
ever, other work reported a dissociation between representa-
tions in the brain, CNNs and human behavior, finding strong
representation of a very broad set of affordances in behav-
ior, but not in CNNs or scene-selective cortex (Groen et al.,
2018). This discrepancy between studies may be due to a
number of reasons, such as the range of actions and environ-
ments sampled and how affordances were operationalized.

Here, we attempt to close this gap by comparing behavioral
annotations of visual scene properties, place-trained CNNs,
and fMRI measurements on a novel set of natural scenes cho-
sen to span six distinct locomotive action affordances. Our
results provide evidence of action affordance representations
in scene-selective cortex. However, these representations are
not well captured by place-trained CNNs, which align well with
behavioral annotations of objects, materials, global properties
and scene category, but not action affordances.

Figure 1: Stimuli overview (A) Example scenes. (B) PCA
of action annotations. Stimuli separate along 3 dimensions.
Walking is central, with one dimension for swimming and boat-
ing, one for biking and driving and one for climbing. (C) t-SNE
visualization of the entire stimulus set and the fMRI subset
covering the attribute space of the SUN Attribute Database.

Materials and Methods
Stimuli
We created a new set of 231 high-resolution (1024×1024 pix-
els) color photographs of daily scenes collected from Flickr.
These images were carefully chosen to depict typical every-
day scenes without prominent objects, humans, or animals,
captured from human-scale, eye-level viewpoints (see Fig. 1A
for examples). To ensure a balanced representation, we cu-
rated the set to include an equal number of indoor, outdoor-
natural, and outdoor-manmade environments. Fig. 1B de-
picts a t-SNE visualization of our stimulus set covering the at-
tribute space of over 12.000 images of the SUN Attribute DB
(Patterson & Hays, 2012). Behavioral annotations were col-
lected for the full set of stimuli. For the fMRI experiment, we
selected a subset of 90 images based on how well they cap-
tured three dimensions of scene navigability identified through
PCA (Fig. 1C) on action affordance annotations.

Behavioral annotations
We collected behavioral annotations for five distinct scene
properties (possible actions, objects, materials, global scene
properties, scene category) online using Gorilla (Anwyl-
Irvine, Massonnié, Flitton, Kirkham, & Evershed, 2020)
and Prolific (N=152) (Palan & Schitter, 2018). Each stim-
ulus and property was labeled by on average 21.7 (SD =
0.87) participants. Representational dissimilarity matrices
(RDMs) were computed using pairwise Pearson’s correlation
distances between the proportion of participants that anno-
tated the presence or possibility of a given label (e.g., propor-
tion of participants that annotated the scene as walkable).
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Figure 2: Correlation between behavioral RDMs for each an-
notated scene property (A) with each other and (B) with RDMs
for each functional ROI (PPA, OPA and RSC). Error bars show
95% CI. * p < 0.05, two-tailed, Bonferroni corrected.

fMRI experiment
12 healthy participants completed four fMRI sessions. First,
scene-selective Parahippocampal Place Area (PPA), Occipi-
tal Place Area (OPA) and Retrosplenial Complex (RSC) were
identified in each participant using a standard block-design
functional localizer scan. The other sessions each consisted
of six event-related presentations of all 90 images, under three
different task instructions: action affordance labeling, object
labeling, or an orthogonal task at fixation. For the current set
of analyses, stimulus-specific beta coefficients were estimated
per run and then averaged across all 18 image repetitions (i.e.
across tasks). RDMs were created for each ROI by computing
pairwise Pearson’s correlation distances between z-scored t-
values of the beta estimates, and averaged across subjects.

CNN representations
Computational model features were extracted from three
CNNs architectures (AlexNet, ResNet18 and ResNet50)
trained for scene classification on the Places365 dataset
(Zhou, Lapedriza, Khosla, Oliva, & Torralba, 2018). RDMs
were computed using pairwise correlation distances between
feature activations to all 90 stimuli in each network layer. We
here report the highest correlation with a single layer for each
network, which varied between the models but was either one
of the highest convolutional layers or a fully connected layer.

Between-RDM comparisons
We compared the behavioral, fMRI and CNN RDMs using
Spearman correlations. Significance was determined with a
two-tailed, Bonferroni-corrected permutation test (n = 10,000),
and 95% confidence intervals were estimated by computing a
bootstrap distribution of correlation values (n = 10,000).

Results
Affordances correlate weakly with other properties
We first examined to what extent action affordance ratings
correlated with other behavioral annotations (Fig. 2A). Affor-
dance ratings exhibited comparatively lower correlations (av-
erage 0.3, SD = 0.07) with other scene properties than these

Figure 3: Correlation between CNN layer activations, average
behavioral RDMs, and functional ROIs. Only the correlation
for the single highest correlating layer is reported. Error bars
show 95% CI. * p < 0.05, two-tailed, Bonferroni corrected.

properties correlated with one another (average 0.61, SD =
0.1). This suggests that action affordance ratings are not im-
mediately reducible to other scene properties, instead forming
a distinct representational space.

Scene-selective cortex represents affordances

Of the five different behaviorally annotated scene properties,
action affordances show the highest correlation with all scene-
selective regions (Fig. 2B). PPA additionally correlates signifi-
cantly with both material and object annotations, and OPA and
RSC with object annotations. These results provide new ev-
idence of action affordance-related representations in scene-
selective regions, which appear distinct from representations
of objects, materials and other scene properties.

CNNs weakly represent affordances and poorly
predict fMRI responses

CNN features have significant correlations with all behavioral
annotations (Fig. 3). However, correlations with action affor-
dances are substantially lower than with other scene proper-
ties. We find the highest correlations between the CNN fea-
tures and global property ratings of each scene. Compar-
isons between the CNN features and fMRI responses also
show substantially lower correlations than in prior studies,
e.g., (King, Groen, Steel, Kravitz, & Baker, 2019).

Conclusion

Collectively, these results show that scene-selective regions
are sensitive to action affordances, in addition to other scene
properties. Our analyses so far show that scene-trained CNNs
do not strongly represent action affordances, suggesting that
different task objectives may be needed to fully capture the
computations in scene-selective regions.

Further analyses of these data will focus on determining
the degree of unique representations of action affordances
in fMRI responses, investigating the effect of task instruction
on neural representation of scene properties, and comparison
with CNNs trained on other tasks than scene classification.
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