CogPonder: Towards a Computational Framework of General Cognitive Control

Morteza Ansarinia (morteza.ansarinia@uni.lu)
Department of Behavioural and Cognitive Sciences, University of Luxembourg
4366 Belval, Luxembourg

Pedro Cardoso-Leite (pedro.cardosoleite@uni.lu)
Department of Behavioural and Cognitive Sciences, University of Luxembourg
4366 Belval, Luxembourg

1148
This work is licensed under the Creative Commons Attribution 3.0 Unported License.
BY To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0



Abstract

Current computational models of cognitive control ex-
hibit notable limitations. In machine learning, artificial
agents are now capable of performing complex tasks but
often ignore critical constraints such as resource limita-
tions and how long it takes for the agent to make deci-
sions and act. Conversely, cognitive control models in
psychology are limited in their ability to tackle complex
tasks (e.g., play video games) or generalize across a bat-
tery of simple cognitive tests. Here we introduce CogPon-
der, a flexible, differentiable, cognitive control framework
that is inspired by the Test-Operate-Test-Exit (TOTE) ar-
chitecture in psychology and the PonderNet framework
in machine learning. CogPonder functionally decouples
the act of control from the controlled processes by in-
troducing a controller that acts as a wrapper around any
end-to-end deep learning model and decides when to ter-
minate processing and output a response, thus produc-
ing both a response and response time. Our experiments
show that CogPonder effectively learns from data to gen-
erate behavior that closely resembles human responses
and response times in two classic cognitive tasks. This
work demonstrates the value of this new computational
framework and offers promising new research prospects
for both psychological and computer sciences.
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Cognitive control is a complex construct whose mean-
ing lacks consensus in the literature (Ansarinia, Schrater, &
Cardoso-Leite, 2022). One of its key properties is that it al-
lows the cognitive system to regulate its processing to achieve
particular outcomes (e.g., inhibit a prepotent response, main-
tain attentional focus), and this regulation typically has a mea-
surable impact on response times (i.e., control is effortful and
takes time). Accordingly, the scientific study of cognitive con-
trol has largely focused on how long it takes people to perform
tasks (e.g., press a key in response to a light) and on what
factors impact those response latencies (e.g., intensity of the
light). Developing computational models of cognitive control
that replicate human response times remains however a sig-
nificant challenge in cognitive science.

Various models of response time have been developed in
the past, such as the drift diffusion model (DDM; Ratcliff,
Smith, Brown, & McKoon, 2016-04). While DDM has its merit,
it is limited to certain types of tasks (i.e., binary decision mak-
ing) and generates data resembling human data distribution
rather than being able to directly perform tasks. Meanwhile in
machine learning, computational agents can perform complex
tasks while overcoming difficult challenges, such as interpret-
ing computations and, crucially, performing human-like con-
trol to adapt computation to the task complexity or available
resources.

This study aims to develop a computational cognitive con-
trol framework that addresses limitations in psychology and
machine learning. The desiderata for our framework include

agency (being able to perform the task at hand), complete-
ness (accounting for all measured behavior, including re-
sponse times), versatility (performing a wide range of tasks
under a common framework), modularity (flexibility and inter-
pretability of the architecture), and learnability (integration into
deep learning frameworks).
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Figure 1: The general CogPonder model template, adaptable
for various instances. Our study used a specific implementa-
tion for Stroop and N-back tasks with a simple Operator (single
dense layer and RelLU activation) and a Controller containing
two separate networks: a recurrent (GRUCell) and a halting
network. The recurrent network iteratively computes inputs to
the Operator, while the halting network estimates the proba-
bility of halting at each time step (A, which parameterizes a
Bernoulli sample that determines halting the trial at each time
step). Though the Operator is slightly task-dependent due
to the distinct task requirements (e.g., two versus three re-
sponses alternatives), the architecture is extendable for iden-
tical configurations across tasks.

CogPonder architecture

We introduce CogPonder, a computational cognitive control
framework that fulfills the outlined desiderata. CogPonder is
inspired by two primary sources: the PonderNet framework
from machine learning and the Test-Operate-Test-Exit (TOTE)
framework from psychology. PonderNet is a recent algorithm
that adjusts the computational complexity of a neural network
based on the complexity of the task and input, allowing the
network to use fewer computational steps for simpler tasks
(Banino, Balaguer, & Blundell, 2021). It shares similarities
with the cognitive model TOTE (Miller, Galanter, & Pribram,
1960), in which computations unfold in cycles with tests eval-
uating specific conditions and determining whether to halt or
continue the process.

CogPonder builds upon an end-to-end off-the-shelf model
called the Operator, which simply takes an input and outputs
a response. The key design principle behind CogPonder is to
wrap the Operator within a local virtual environment governed
by the Controller, which intercepts the inputs and outputs, de-
termining what inputs are fed to the Operator and what output
is emitted at a given time by the system. The Controller, imple-
mented similarly to PonderNet, adjusts the system’s computa-
tional complexity and determines its response time by com-
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puting the probability of halting at each time step within a
given trial. Unlike comparable deep learning architectures for
human response times which relies on decision uncertainty
(e.g., RTNet; Rafiei & Rahnev, 2022), CogPonder’s response
time is determined by computational requirements. Further-
more, CogPonder aims to align computation time with human
behavior, emphasizing TOTE’s building blocks metaphor and
furthering our understanding of cognitive control theory.

Evaluation

We evaluated a CogPonder instance using human data by
aiming to align the timing of the model’s output with human
response times. As a first test, we examine a single Cog-
Ponder agent independently performing two cognitive control
tasks. This proof of concept is vital, as it shows how tasks
previously studied in isolation can now be investigated within
a common computational framework.

Method We train a CogPonder agent to compute responses
at each time step and output final choices, thus generating
for this agent data that has the same structure as human
data (i.e., trial-level data; Defossez et al., 2020), which en-
ables the direct comparison of agent and human behavior.
The agent aligns with human behavior by minimizing the loss
function, Liotg, which comprises two terms that are weighted
by the hyperparameter B: Ligtal = Lresponse + PLiime- The
first term, Lresponse, Called reconstruction loss, aims to match
agent choices to human choices using the cross entropy loss
function. The second term, Lime, called regularization loss,
aims to align the agent’s number of computational steps within
each trial with human response times using KL divergence. It
is important to note that our method contrasts agent’s halting
steps with participant response times. More specifically, we
track the agents’ number computational steps (n) rather than
elapsed computation time (i.e., seconds), as the latter varies
depending on the hardware. To compute Lime, we convert
response times from seconds to steps using a step duration
hyperparameter.

Data We evaluated CogPonder using the Self-Regulation
Ontology dataset, containing behavioral data from 521 partici-
pants who completed cognitive tests (for further details on the
datasets, see Eisenberg et al., 2019). Specifically, we focused
on participants who completed the Stroop and 2-back tests,
chosen for their relevance to cognitive control despite their dif-
ferences in stimuli, task instructions, cognitive processes, and
response options. The Stroop task required participants to
identify the ink color of words while ignoring the words them-
selves which are color names that are congruent or incongru-
ent with their ink. The 2-back task involved reporting if a letter
matched the one presented two letters earlier. For both tasks,
trial data included stimulus, response, and response time. The
data, which represented a time series of trials, was split into
75% training and 25% test sets.

Experimental setup Model training involved up to 10,000
epochs using the Adam optimizer (learning rate of 0.01). All

parameters were tuned automatically, except for the step du-
ration hyperparameter, set manually at 20 milliseconds (future
iterations will estimate this using a dedicated validation set).
Furthermore, as customary (Luce, 1986), a non-decision time
hyperparameter was incorporated into the model, accounting
for duration factors unrelated to decision-making.

Results The first goal of this study was to assess the extent
to which a CogPonder model behaves like a human after being
trained with human data. We compared the average accuracy
and response time of human and CogPonder agents in Stroop
and 2-back tests (Figure 2). Our results show that CogPonder
is able to capture broad patterns in human data, producing
similar accuracy and response times across trial types.

We then assessed CogPonder’s ability to reproduce more
nuanced human phenomena by analyzing 1) average accu-
racy and response time as a function of experimental condi-
tions (e.g., congruent versus incongruent Stroop trials) and 2)
response time distributions in the two tests. Although there
are some differences, CogPonder approximately mimics hu-
man’s average accuracy and response time (Figure 2, first and
second rows), as well as similar response time distributions
(Figure 2, third row).
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Figure 2: Comparing CogPonder agent and human agent

Concluding remarks

CogPonder is an initial effort to create a general computational
cognitive control framework suitable for various use-cases,
in particular modeling behavior across cognitive test batter-
ies. CogPonder’s performance demonstrates its ability to align
with human behavior, making it valuable for studying cognition
across multiple cognitive tests — this framework can easily
be extended to accommodate a wider range of tasks. Impor-
tantly, CogPonder breaks the “complexity of behavior ceiling”
relative to existing approaches, making it potentially applica-
ble not only to multiple simple tests but also to complex ones.

Future work will extend the CogPonder implementation and
evaluation procedures, test additional cognitive tasks, pat-
terns of inputs and outputs (see Defossez et al., 2020), learn
computation hierarchies of tasks following the TOTE’s building
block metaphor, and further investigate CogPonder’s ability to
generalize across tasks.
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