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Abstract
In some reward-learning contexts, abstract stimulus rep-
resentations can effectively guide behavior, whereas in
others, more detailed representations are needed to
guide choice. Here, using a novel reinforcement learn-
ing task, we asked how children, adolescents, and adults
flexibly adjust the specificity of the representations used
for learning across contexts, as well as how the speci-
ficity of the representations used during learning influ-
ences subsequent memory. We found that across devel-
opment, participants up-weighted more detailed informa-
tion when doing so was beneficial. Further, participants
who placed greater weight on detailed information during
learning also demonstrated enhanced mnemonic speci-
ficity for the stimuli they encountered.
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Introduction
Studies of value-based learning and episodic memory en-
coding suggest that relative to adults, children may repre-
sent information with less specificity (Michalska et al., 2016;
Schiele et al., 2016; Ramsaran, Schlichting, & Frankland,
2019; Keresztes, Ngo, Lindenberger, Werkle-Bergner, & New-
combe, 2018). However, to effectively guide behavior across
diverse contexts, learning and memory systems should flex-
ibly adapt to the statistics of diverse contexts. Broad gener-
alization gradients may effectively guide action in some con-
texts, but selecting adaptive actions in other environments re-
quires more granular representations of experiences (Santoro,
Frankland, & Richards, 2016).

Here, we developed and used a novel reinforcement learn-
ing task and subsequent test of recognition memory to ad-
dress how the flexible adaptation of the specificity of value-
learning changes across development and whether develop-
mental change in mnemonic specificity emerges from corre-
sponding changes in value-learning computations.

Methods
Participants and task

148 participants between the ages of 8 and 26 completed
a two-part, online study. In the first session, participants
completed a reinforcement-learning task that comprised six
blocks. On every trial, they saw a stimulus and had to de-
cide whether to approach it (and win or lose points) or avoid
it (and see how many points they would have won or lost
had they approached). Within each block, stimuli comprised
five exemplars drawn from three categories (e.g., in the ’pets’

block, stimuli comprised 5 unique dogs, 5 unique cats, and 5
unique rabbits). Critically, unbeknownst to participants, three
blocks were category-predictive, such that the stimulus cate-
gory (e.g., dogs) determined the mean of the normal distribu-
tion (SD = 1.5) from which rewards were randomly sampled
on each trial. In each category-predictive block, one category
was good (6 ≥ mean reward ≥ 3), one category was bad (-6
≤ mean reward ≤ -3), and one was neutral (mean reward =
0, though 0 itself was never a possible outcome of ’approach-
ing’). The other three blocks were exemplar-predictive, such
that the individual exemplars were pseudo-randomly assigned
deterministic point values between -9 and 9. Within each
block, six stimuli repeated 6 times, three stimuli repeated 3
times, and six stimuli were only presented once.

One week after completing the learning task, participants
completed a memory test. On each trial, participants saw an
image, and had to determine if it was definitely new, maybe
new, maybe old or definitely old. The test comprised all 90 old
images that participants saw during learning, as well as 48
novel category foils (e.g., hamsters), and 54 novel exemplar
foils (e.g., new dogs).

Modeling reinforcement learning
We fit multiple variants of a temporal-difference learning
model to our choice data. The models assumed that partic-
ipants tracked stimulus values at both the category (c) and ex-
emplar (e) levels, and integrated them to determine whether
to approach or avoid each stimulus (s). At the group level, our
best-fitting model included a single learning rate but separate
inverse temperature parameters for scaling stimulus values at
the category and exemplar level, such that:

p(approach|s) = eβc∗V (c)+βe∗V (e)

eβc∗V (c)+βe∗V (e)+ e0

The model allowed these inverse temperature parameters
to vary across block conditions (category- vs. exemplar-
predictive). On each trial (t), participants updated V (c) and
V (e) based on the prediction errors they experienced (i.e.,
(r −V (c)t) and (r −V (e)t), scaled by a learning rate. Our
best-fitting model also included a single free parameter for the
initial category- and exemplar-level stimulus values.

Results
Learning
Participants made increasingly optimal approach-avoid
choices as a function of increasing age and within-block
trial number (ps < .001). Participants also learned to make
more optimal choices faster in the category-predictive block
relative to the exemplar-predictive block (ps < .001). The
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Figure 1: (A) Optimal approach-avoid choices across stimulus repetitions, age groups and block conditions. (B) Optimal
approach-avoid choices for the first appearance of each stimulus across age groups and same-category trials. (C) Category-level
and exemplar-level inverse temperature parameters across age groups and block conditions. Lines show age-group means.

effect of block condition varied by age (p = .002) such that
age differences in optimal choices were more pronounced in
the exemplar-predictive block (Fig. 1A).

Participants also used stimulus category to guide re-
sponses to novel, within-category exemplars. We found that
optimal responses to new stimuli were more likely as a func-
tion of increasing category repetition, but only in the category-
predictive condition (p < .001; Fig. 1B). In addition, this inter-
action effect grew stronger with increasing age (p = .002).

Did participants across age flexibly adjust the extent to
which they used categorical versus exemplar-level value es-
timates to guide choice? To address this question, we exam-
ined inverse temperature parameter estimates from our com-
putational model. In line with our hypothesis, we observed
a block condition x level of abstraction interaction effect,
F(1,438) = 74.8, p < .001, such that participants demon-
strated higher values of βc in the category-predictive block
(Fig. 1C). Contrary to our hypothesis, however, we did not
observe a significant age x block condition x level of abstrac-
tion interaction effect, meaning we did not observe evidence
for age differences in the extent to which participants flexibly
adapted their weighting of categorical and exemplar-level in-
formation across blocks.

Memory

Did the extent to which exemplar-level information could
be used to guide learning influence subsequent recognition
memory? To address this question, we used each partici-
pant’s memory confidence responses to construct receiver op-
erating characteristic curves for each level of memory speci-
ficity in each block condition. We then used the area under
the curve (AUC) as a theory-neutral measure of memory per-
formance (Brady, Robinson, Williams, & Wixted, 2022).

Participants demonstrated better category versus exemplar
memory, as well as for stimuli encountered in the exemplar-
predictive relative to the category-predictive blocks of the
learning task (ps < .001) We did not observe a signifi-
cant level of abstraction x block condition interaction effect,
F(1,442.2) = .12, p = .73, nor did we observe any significant
interactions with age (ps > .10).

Finally, we asked whether individual differences in the ex-
tent to which participants weighted exemplar-level information
during learning influenced subsequent exemplar-level mem-
ory. We examined how βe, age, block condition, and their in-
teractions influenced memory for individual exemplars. In line
with our hypothesis, we found that βe significantly predicted
memory, F(1,287.6) = 26.2, p < .001 (Fig. 2), most strongly
in the exemplar-predictive condition (β x block condition ef-
fect: F(1,173.2) = 10.4, p = .002.). We further observed a
β x block condition x age interaction effect, such that when
exemplar-level information was useful for guiding choice, older
participants who weighted it most strongly showed the best
exemplar-level memory.

Figure 2: (A) Relation between βe estimates and exemplar-
level memory (AUC) across age groups and block conditions.

Conclusions
Taken together, our results show that participants across age
could flexibly adapt reinforcement learning computations to
the reward structure of the environment, using more specific
representations to guide choice when doing so was necessary
for gaining reward. Across development, memory specificity
was shaped by reward-learning – the extent to which partici-
pants weighted exemplar-level information during learning in-
fluenced the extent to which they could differentiate old from
new exemplars one week later. This relation grew stronger
with age, suggesting that the prioritization in memory of infor-
mation that is useful for decision-making may increase across
development.
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