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Abstract
Upon foveating an object, in a few hundred milliseconds
or less, we not only recognize the category or identity of
that object, but also perceive its rich three-dimensional
(3D) structure that causally underlies what we sense. Crit-
ically, this richness of perception is not brittle; our per-
cepts may degrade under unusual or challenging viewing
conditions, but they do so gracefully, typically remaining
far above chance performance even when the best com-
puter vision systems fail. What renders human percep-
tion distinct – with rich representations that are never-
theless robust to unusual viewing conditions – relative to
the existing computer vision systems? Here we present
a new computational architecture of perception that es-
timates 3D scene structure from real-world images in a
fast bottom-up pass, and that can further refine this es-
timate via optimization under a differentiable generative
model. In a case study of human face perception, we
show that this model, and not the bottom-up only alterna-
tives, matches human accuracy in both an upright and in-
verted face matching task. These results suggest that in-
tegrating discriminative and generative computations are
needed to yield humanlike perception systems.

Keywords: inverse graphics; face perception; computational
modeling; neural networks; robust vision

Introduction
When we encounter an object, we not only see its lower-level
visual features (e.g., color, orientation), or attach high-level
semantic labels (e.g., object category), but we also perceive
rich three-dimensional (3D) scenes that causally underlie the
inputs we sense (Olshausen, Mangun, & Gazzaniga, 2014).
Such perceptual experiences come together with breathtak-
ing speed, in a few hundred milliseconds or less (Grill-Spector
& Kanwisher, 2005), and yet remain robust to unusual or chal-
lenging viewing conditions. In such atypical settings, percep-
tion is not brittle: It can certainly degrade and even slow down
(both of which can be measured using objective, performance-
based tasks), but performance typically remains far above
chance, including in settings that render the accuracy of the
best computer vision systems at chance level (e.g., Yildirim,
Siegel, Soltani, Chaudhari, and Tenenbaum (2023)). What
underlies the richness and robustness of biological vision – a
significant goal post for machine vision systems?

Existing approaches individually do not address this ques-
tion (DiCarlo et al., 2021). Discriminative models learn map-
pings from images to target variables (including in some cases
over 3D scene structure (Yildirim, Belledonne, Freiwald, &
Tenenbaum, 2020)), offering fast, resource-rational mecha-
nisms for visual inference, but they can be brittle when tested
out of distribution (e.g., unusual viewing angles). Generative
models encode a joint distribution of images and latent vari-
ables, and can in principle enable broader generalization with
“fatter” tails, but inference can be costly.

Here, we present a new computational account of vision
that integrates discriminative and generative computations in
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Figure 1: A: Our proposed architecture integrates a recog-
nition network with a differentiable generative model. B & C:
Visualization of bottom-up estimate and iterative optimization
(upright & inverted).

a single architecture. This architecture follows from a recent
family of computer vision systems that combine test-time opti-
mization with recognition models (e.g., Wu et al. (2017)). The
model consists of a discriminative bottom-up pass to compute
an initial percept – a 3D scene estimate – given an input im-
age. This estimate is then refined via optimization over a dif-
ferentiable generative graphics program (Fig. 1A). We call this
model EDIG, short for efficient differentiable inverse graphics.

As a case study, we implement EDIG in the context of the
robustness of human face perception. It is well known that
human face perception degrades when face stimuli are pre-
sented upside down; however, only a recent study quantified
the extent of this performance gap using an identity match-
ing task (Dobs, Yuan, Martinez, & Kanwisher, 2022). Sur-
prisingly, their results indicate that the extent to which perfor-
mance degrades in humans from upright to inverted faces is
significantly less than the substantial drop of performance ob-
served in a standard face identification network, illustrating the
robustness of perception relative to standard vision models.

We show that EDIG matches human-level accuracy with
just a single bottom-up pass for upright faces, whereas it re-
quires several hundred iterations to match human-level accu-
racy in the inverted face recognition task. We report that this
coincides with the increased response time in humans in the
inverted task. We compare EDIG to its bottom-up-only ab-
lation and a standard face-identification network finding that
only EDIG reaches human level performance across tasks.

Computational model
Our model integrates a bottom-up discriminative recognition
model with test-time optimization based on a differentiable
generative graphics program. The generative model ex-
presses a distribution over 3D scene structures based on the
3D Morphable Face Model (Paysan, Knothe, Amberg, Romd-
hani, & Vetter, 2009) – x = (α,β,δ, p,γ) denoting 3D shape,
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expression, texture, pose, and lighting – and operates in both
the top-down (for rendering) and the bottom-up (for gradient
computation) directions. To realize this model for the percep-
tion of real-world human faces, we adapt the recognition net-
work architecture introduced by Deng et al. (2019). This net-
work is trained, in a semi-supervised manner, to map images
of human faces to the generative model latents. To that end,
Deng et al. (2019) use a pair of reconstruction-based objec-
tive terms for training: a photometric loss (comparing the input
and predicted images) and a “perceptual loss” (comparing the
encodings of the input and predicted images in a suitable em-
bedding space – a later layer of a face classification network).
In contrast to Deng et al. (2019), we employ the differentiable
generative model also during test time, to refine the initial es-
timates generated by the recognition network.

During inference, we use the recognition network to initial-
ize the latents x. For upright faces, this initialization is often re-
markably accurate, with optimization leading to only marginal
performance increase. On the other hand, when the observed
image is inverted (i.e., flipped by 180◦), we warm-start opti-
mization by manually flipping the pose vector p and further
refining it through an L2 loss based on five facial landmarks
(eyes, mouth ends, nose) for 100 iterations. From this tuned
pose vector and the rest of the bottom-up initialized latents,
we backpropagate the photometric and feature encoding loss
to optimize the latents for an additional 1000 steps. We use
Adam with learning rate 0.001 as our test-time optimizer.

Training and alternative models We make comparisons to
the bottom-up only component of the EDIG model, as well as a
deep neural network trained for face identification reported in
Dobs et al. (2022) that we refer to as ID. To equate these mod-
els with respect to their training experience, we train EDIG’s
bottom-up recognition model as well as the face identification
network using the same 422k training images used in (Dobs
et al., 2022). For each of these two networks, we tested two
different architectures (ResNet50 and VGG16) and here we
report the best performing architecture for each model.

Results

Identity matching task with upright and inverted faces
We tested EDIG and alternative models on the identity match-
ing task employed by Dobs et al. (2022). In this work, humans
were asked to match the facial identity in a target image to
one of two test images across 1560 unique match-to-sample
triplets and without any time constraints. Across two exper-
iments, images were shown upright or inverted (Fig. 2A).
Average human accuracy for upright and inverted faces was
87.5% and 76.8%. Model accuracy was measured based on
the Pearson dissimilarity using the shape + texture latents in
EDIG and penultimate fully connected layer in ID between the
target and each matching image.

EDIG explains human accuracy and response times
Even though test-time optimization improves EDIG’s perfor-
mance in both the upright and inverted faces, this benefit is
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Figure 2: A: Identity matching task. B: EDIG task accuracy
over optimization steps. C: Human vs. model comparisons.

particularly pronounced for the inverted faces (Fig. 2B). We
find that the particular choice of embedding space for opti-
mization (alongside with the photometric loss) is important:
Other choices such as the early or later layers of the bottom-
up recognition network, or a later layer from an Imagenet-
pretrained network performed worse. The alternatives we
tested – the bottom-up recognition model and the ID network –
did not reach human level accuracy, especially in the inverted
setting (Fig. 2C).
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Figure 3: Human reaction time and EDIG optimization steps
until human accuracy is reached.

Finally, we find that the amount of computation EDIG re-
quires to match human-level performance parallels average
human response times, who are significantly slower to re-
spond in the inverted setting than the upright (Fig. 3, p < .01).
In the upright setting, EDIG requires no iterations to match hu-
man performance, while 1000 iterations are needed to reach
human accuracy in the inverted setting. Future work should
make trial-level comparisons of response times.

Conclusion
We presented a new model of vision, EDIG, that combines a
bottom-up inference network and test-time optimization in a
unified architecture. In the domain of face perception, this ar-
chitecture not only better explains robustness of human face
perception to the inversion effect, but also shows signatures of
higher computational demand when presented with unusual
viewing angles. Future work will explore further integration of
the recognition and generative models, afforded by the fact
that both are differentiable and might be closely related to
each other in their intermediate representations.
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