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cortex
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Abstract

Artificial neural network (ANN) models trained on face
identification (e.g., VGG-face) outperform models trained
on object categorization (e.g., VGG-16, CORnet-Z) in pre-
dicting human face recognition behavior. Why then does
the opposite hold for prediction of the responses of face-
selective neurons in both humans and macaques? Here
we test the hypothesis that face-specific neural machin-
ery is optimized for both detecting and discriminating
faces. Consistent with this hypothesis, we find that face-
selective neural responses in macaque inferior temporal
(IT) cortex are best fit by ANNs trained on both face iden-
tification and face detection (faces vs. objects).
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Introduction

Face processing holds considerable significance in neuro-
science, as a multifaceted cognitive process at the core of
human social interactions and communication. A rich under-
standing of this system would include an image-computable
computational model that can sufficiently explain face-related
behaviors and the underlying brain circuitry that support them.

Previous research presents a puzzling contrast. On the one
hand, networks trained on object recognition (VGG-obj) per-
form poorly compared to those trained on faces (VGG-face)
on face recognition tasks (Dobs, Martinez, Kell, & Kanwisher,
2022). On the other hand, studies suggest that training on
face identification is not a prerequisite for the emergence of
brain-like neural face representations (Chang, Egger, Vetter,
& Tsao, 2021; Vinken, Prince, Konkle, & Livingstone, 2022)
This indicates that generic object features may contribute to
constructing a representational space similar to the neural
face space. Moreover, models trained on broad stimulus cat-
egories (e.g., ImageNet, Places) predict neural face-specific
responses similarly well or even better than those trained on
faces only (Grossman et al., 2019; Ratan Murty, Bashivan,
Abate, DiCarlo, & Kanwisher, 2021).
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Here we test the hypothesis that face-specific neural pop-
ulations are engaged both in face detection (i.e., discriminat-
ing faces from other objects) and face identification (i.e. dis-
criminating different faces from each other). Thus, ANN mod-
els trained on both faces and objects will outperform mod-
els trained on only faces or only objects in predicting face-
selective neurons.
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Figure 1: A. Behavioral task to test facial identity discrimina-
tion performance in humans, B. development of ANNs with
varying training diet and task objectives, and C. large-scale
neural recordings across macaques IT to measure the repre-
sentations of the face images (n=200) used in A.

Results
We used three VGG-16 networks (Figure 1B) trained from
scratch on object categorization (VGG-obj), face identification
(VGG-face) and both object and face discrimination (VGG-
dual) (Dobs, Martinez, et al., 2022). By extracting activation
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patterns from the networks’ penultimate layers for each of 200
face images used in a behavioral target-matching task (Figure
1A; Dobs, Yuan, Martinez, & Kanwisher, 2022), we compared
the ANNs to human face discrimination accuracy. Consis-
tent with previous findings, we observed that indeed VGG-face
significantly outperformed VGG-obj (Figure 2A) and achieved
human-like behavioral accuracy.

Using previously established methods (Kar, Kubilius,
Schmidt, Issa, & DiCarlo, 2019), we recorded large-scale neu-
ral activity across macaque IT cortex (monkey A: 53 sites;
monkey B: 67 sites) while the monkey passively fixated the
same face images, presented for 100 ms on their central
field of view (8 deg; Figure 1C). In line with previous results
(Ratan Murty et al., 2021; Grossman et al., 2019; Chang et
al., 2021), we found that VGG-obj better predicted macaque
IT neurons’ responses to the face images (see Figure 2B).
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Figure 2: Behavior vs. Neural predictivity of ANNs. A. VGG-
face significantly outperforms VGG-obj in the task shown in
Figure 1A. B. VGG-obj better predicts macaque IT neurons’
responses to the face images used in the behavioral tasks.
Each dot refers to a neural site (white dots: monkey A, 53
sites; black dots: monkey B, 67 sites); paired t-test; p<<0.0001;
t(119) =5.6813. EV = explained variance

Next we tested the IT predictivity of a network trained on
both face and object discrimination (VGG-dual; Dobs, Mar-
tinez, et al., 2022). Interestingly, we found that it predicted
neural responses in macaque IT better than VGG-obj (Fig-
ure 3A). Furthermore, this improved performance increased
as a function of the face selectivity of the recorded neural site
(Figure 3B). But what is it about VGG-dual that enables it
to outperform VGG-obj? If networks must be optimized both
for face detection and face discrimination to account for neu-
ral responses, then a network that maintains separate out-
put categories for each face but assigns all objects to one
category (VGG-faceObj) should outperform a network trained
on the same stimuli that assigns all faces to one category
but maintains separate output categories for each object type
(VGG-objFace; Figure 4A). Indeed, preliminary evidence sup-
ports this hypothesis, with improvement in neural predictivity
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of VGG-faceObj over VGG-objFace increasing with the face
selectivity of the neuron (Figure 4B).
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Figure 3: A. ANNs optimized for both tasks (VGG-dual)
outperform VGG-obj, in predicting macaque IT neurons’ re-
sponses to the face images used in the behavioral tasks. Each
dot refers to a neural site (white dots: monkey A, 53 sites;
black dots: monkey B, 67 sites). p<0.0001; t(119) =5.35. B.
The increase in % Explained Variance is significantly corre-
lated with the face-selectivity of the neural sites. R = 0.34
(neuron-by-neuron; 120 neurons), p <0.0001. Neurons are
grouped together based on their face selectivity index (FSI:

X-axis).
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Figure 4: A. Two novel ANNs: VGG-faceObj trained on face-
detection (face vs. object) and facial identity discrimination,
VGG-objFace trained on face-detection (face vs. object) and
object categorization. B. VGG-faceObj better predicts IT neu-
rons. The difference in % Explained Variance is significantly
correlated (R = 0.27, p = 0.0029) with the face-selectivity of
the neural sites.Neurons are grouped together based on their
face selectivity index (FSI: x-axis).

Discussion

This study supports the hypothesis that face-specific neu-
ral machinery is optimized for both face detection and face
discrimination, as evidenced by the superior performance of
VGG-dual and VGG-faceObj in predicting face-selective neu-
ral responses in macaque IT cortex. Moreover, these results
provide an answer to why models trained on faces only -
thereby being optimized for face discrimination but not face



detection - do not predict face-selective neural responses as
well as models trained on faces and objects.
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