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Abstract

Accounting for why sensitivity to perceptual input (as as-
sayed by discrimination judgments) is not always accom-
panied by conscious awareness (as assayed by detection
judgments) remains a challenge for theories of percep-
tion. Here we test a hypothesis that awareness is sup-
ported by higher-order inferences within generative mod-
els of perceptual content. In line with model simulations,
we show that both detection and discrimination expecta-
tions influence reaction times on a categorisation task.
By combining a no-report version of our task with func-
tional neuroimaging we reveal a neural dissociation be-
tween prediction errors (PEs) on content (discrimination)
and awareness of content (detection): content PEs are
tracked in posterior sensory cortex while awareness PEs
are tracked in prefrontal cortex. Together, our results
reveal a hierarchical structure supporting visual detec-
tion and discrimination, consistent with a proposal that
awareness reflects a higher-order inference within per-
ceptual generative models.

Keywords: awareness; consciousness; predictive processing;
perception; signal detection theory

Introduction

Our perceptual experience is characteristically limited: at any
given moment in time, we are aware of only a subset of per-
ceptual inputs. Such failures of awareness do not neces-
sarily reflect failures of sensory processing: there are cases
where the content of stimuli is rendered invisible but never-
theless continues to exert influence on behavior (Dehaene et
al. (2001); Marcel (1983); Persaud et al. (2011); Weiskrantz,
Warrington, Sanders, and Marshall (1974), although, see
Peters and Lau (2015)). Within the framework of percep-
tual decision-making, dissociations between performance and
awareness can be modelled as a distinction between discrim-
ination — responding to some aspect of stimulus identity — and
detection — responding as to whether a stimulus is perceived
or not (Azzopardi & Cowey, 1997; Green & Smets, 1966; Pe-
ters & Lau, 2015).

Why we detect some perceptual contents but not others
remains a core challenge for computational models of per-
ception (Hohwy & Seth, 2020; Marvan & Havlik, 2021). In
this study, we test a core hypothesis that awareness reflects a
higher-order inference within a generative model of perceptual
content (Lau, 2019, 2007; Fleming, 2020; Morales, 2022). Us-
ing a novel experimental paradigm in combination with com-
putational modeling and neuroimaging, we identify distinct sig-
natures of discrimination and detection prediction errors in the
human brain.

Results
Interrogating prediction errors on content and
awareness

To quantify hypotheses regarding the different types of predic-
tion errors, we utilized our recently developed Higher-Order
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Figure 1: Model and experimental paradigm. (A) Graphi-
cal representation of the Higher-Order State Space (HOSS)
model. Perceptual states W and awareness state A are in-
ferred based on sensory input X. Predictions and prediction
errors are generated at all levels of the model (B) Experi-
mental paradigm. Compound cues indicated the probability of
stimulus presence (A level) = present vs absent via the shape
and stimulus content (W level) = face vs house via the color.

Stace Space (HOSS) model (Fig. 1A). HOSS is a hierarchical
Bayesian model in which inference on awareness (A) is su-
perordinate with respect to inference on content (W). Upon
receipt of a sensory sample X, the model is inverted to com-
pute the posteriors over A and W by marginalising:

P(AIX =x) xZP P(W|A)P(X

=x|W) (1)

P(W|X =x) °<ZP P(WIA)P(X = x|W) @
To be able to independently manipulate predictions about
perceptual content and detection/awareness of content, we
developed a novel perceptual discrimination task with com-
pound cues (Fig. 1B). The shape of the cue indicated the
probability that a stimulus was present (rather than absent)
whereas the color of the cue indicated the probability that a
stimulus was a face (rather than a house). For example, a yel-
low circle indicated a high probability that no stimulus would be
shown (absence), but if a stimulus was shown, it would likely
be a house. In what follows, we refer to predictions about per-
ceptual content that are relevant for discrimination as “content
expectations”, and to predictions about perceptual presence
that are relevant for detection as “presence expectations”.
We simulated prediction errors (PEs) on content and pres-
ence in each of the 12 conditions (4 compound cues x 3 tar-
gets) as the Kullback—Leibler (KL) divergence between the
prior and posterior distributions within the A and W layers of
the model, respectively (Fig. 2A). Content prediction errors
ensue when there is a mismatch between the content pre-
diction and the target. For example, a face (F) is predicted
but a house (dark blue) is presented, irrespective of whether
presence (P) or absence (A) was predicted (Fig. 2A) left). In
contrast, presence prediction errors are high when presence
(P) was predicted and noise (green) was observed or when
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Figure 2: Model simulations, behaviour and neural results. (A) Simulated prediction errors (PEs), defined as the KL di-
vergence between prior and posterior, for all experimental conditions. (B) Results from linear mixed effects models explaining
reaction times (RTs) from simulated predictions errors. A model containing the summed PEs over both layers (green) best
explained the RT data. (C) Representational Dissimilarity Matrices (RDMs) encoding similarities between conditions sharing
content prediction errors (left) and awareness prediction errors (right). (D) The content PE RDM correlated negatively with ac-
tivity in early visual areas (left) whereas the awareness PE RDM correlated negatively with activity in the vmPFC (right). (E)
Multi-dimensional scaling (MDS) demonstrates that activity in EVC diverges during conditions with a PE on content (green and
blue). (F) In contrast, activity in vmPFC diverges during conditions with a PE on awareness (red and black). Legend: P = present;
A = absent; F = face; H = house; N = noise; EVC = early visual cortex; vmPFC = ventromedial prefrontal cortex; **p<0.005;
***p<0.0005. Error bars reflect standard errors of the mean (SEM)

absence was predicted (A) and presence (face (F) or house
(H)) was observed, irrespective of the content predictions (Fig.
2A right).

Rich representations of content and awareness
prediction errors in the brain

We first demonstrated that participants were able to learn and
use the compound cues. In a behavioural experiment, thirty-
six participants categorized targets following compound-cues.
A model-based linear mixed-effects regression analysis pre-
dicting reaction times (RT) from the simulated content and
presence PEs revealed significant increases in RT for both
content PEs ( = 0.028, #(16508.07) = 5.28, p = 0.0000013;
(Fig. 2B blue bar) as well as presence PEs ( = 0.022,
1(16508.04) = 2.89, p = 0.0038; (Fig. 2B red bar). The inter-
action between content and presence PEs was not significant
(t(16508.04) = -0.58, p = 0.56; Fig. 3B, grey bar), suggesting
that the influence of content PE on behaviour was not affected
by the degree of presence PE, and vice versa.

Twenty-seven of the participants who had completed the
behavioural experiment went on to perform a no-report ver-
sion of the same task in a 3T MRI scanner while undergoing
whole-brain functional neuroimaging. We used representa-
tional similarity analysis (RSA) to identify brain regions coding
for the two types of prediction errors (Fig. 2C). The content
PE RDM correlated negatively with neural acivity in early vi-
sual cortex (EVC) whereas the awareness PE correlated with
activity in ventromedial prefrontal cortex (vmPFC; Fig. 2D).
Multi-dimensional scaling of activity in these areas reveals a
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rich encoding of PEs: activity patterns encode level-specific
PEs (content for EVC: 2E; awareness for vmPFC: 2F) but
also diverge according to (a) the exact type of content vio-
lation (face, house, present, absent) and (b) whether predic-
tions within the other layer were also violated. This type of PE
coding is consistent with a recurrent, hierarchical architecture
supporting detection and discrimination.

Discussion

In this study we set out to test a hypothesis that subjective
detection reflects a higher-order inference within a genera-
tive model of perception. We developed a novel experimental
paradigm that allowed us to independently interrogate predic-
tion errors on stimulus content and presence. In line with a
hierarchical architecture for awareness, we found that content
PEs were represented in sensory brain areas while presence
PEs were represented in frontal brain areas. Our findings are
in support of higher-order theories of consciousness (Brown,
Lau, & LeDoux, 2019; Lau & Rosenthal, 2011) and suggest,
counterintuitively, that inferences about whether something is
seen (detection) are higher-order with respect to inferences
about what is seen (discrimination)
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