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Abstract
Here, we aimed to explain neural representations of per-
ception, for which we analyzed the relationship between
multi-unit activity (MUA) recorded from the primate brain
and various feature representations of visual stimuli. Our
encoding analysis revealed that the feature-disentangled
latent representations of generative adversarial networks
(GANs) were the most effective candidate for predicting
neural responses to images. Importantly, the usage of
synthesized yet photorealistic images allowed for supe-
rior control over these data as their underlying latent
representations were known a priori rather than approx-
imated post-hoc. As such, we leveraged this property
in neural reconstruction of the perceived images. Taken
together with the fact that the (unsupervised) generative
models themselves were never optimized on neural data,
these results highlight the importance of feature disen-
tanglement and unsupervised training as driving factors
in shaping neural representations.

Keywords: feature disentanglement; generative modeling;
neural coding; multi-unit activity

Introduction
The brain is adept at recognizing a virtually unlimited variety of
different visual inputs. Every stimulus creates a unique pattern
of brain activity that carries information about that stimulus in
some shape or form - but this stimulus-response transforma-
tion remains largely unsolved due to the complexity of multi-
layered visual processing in the brain. The field of neural cod-
ing aims to characterize this relationship where neural encod-
ing seeks to find how properties of external phenomena are
stored in the brain (van Gerven, 2017), and vice versa, neural
decoding aims to find what information about the original stim-
ulus is present in and can be retrieved from the recorded brain
activity by classification (Haxby et al., 2001; Kamitani & Tong,
2005; Horikawa & Kamitani, 2017), identification (Mitchell et
al., 2008; Kay, Naselaris, Prenger, & Gallant, 2008) or re-
construction (Nishimoto et al., 2011; Du, Du, & He, 2017;
Güçlütürk et al., 2017; Shen, Horikawa, Majima, & Kamitani,
2019; VanRullen & Reddy, 2019; Dado et al., 2022). Note
that the latter problem is considerably harder as its solution
exists in an infinitely large set of possibilities whereas those
of classification and identification can be selected from a finite
set.

Although neural representations are constructed from ex-
perience, an infinite amount of visual phenomena can be rep-
resented by the brain to successfully interact with the envi-
ronment. That is, novel yet plausible situations that respect
the regularities of the natural environment can also be men-
tally simulated or imagined (Dijkstra, Bosch, & van Gerven,
2019). From a machine learning perspective, generative mod-
els achieve the same objective by capturing the probability
density underlying a huge set of observations. Generative
adversarial networks (GANs) (Goodfellow et al., 2014) are
among the most impressive generative models to date which

can synthesize novel yet realistic-looking images (Brock, Don-
ahue, & Simonyan, 2018; Karras, Aila, Laine, & Lehtinen,
2017; Karras, Laine, & Aila, 2019; Karras et al., 2021) from
z-latent vectors, which represent the visual information of their
corresponding images in their low-dimensional code. In par-
ticular, feature-disentangled GANs have been designed to
separate the factors of variation in the generated images. One
member of the family of feature-disentangled GANs is Style-
GAN (Karras et al., 2019) - which maps the conventional z-
latent via an 8-layered MLP to an intermediate and less en-
tangled w-latent space.

We hypothesized that feature-disentangled w-latents repre-
sent the visual information similar to the brain such that we
could utilize it for neural encoding and -decoding. We also
evaluated the latents of Contrastive Language-Image Pre-
training (CLIP) which represent both images and text in a
shared representational space that captures their semantic re-
lationships (Radford et al., 2021). We found that w-latents in-
deed outperformed z- and CLIP latents in predicting neural re-
sponses to images. We then used w-latents for neural recon-
struction by the adoption and improvement of the experimental
paradigm of (Dado et al., 2022) as follows: visual stimuli were
synthesized by a feature-disentangled GAN and presented to
a macaque with cortical implants in a passive fixation task.
A neural decoder was fit based on the recorded brain activ-
ity and the ground-truth latents of the stimuli. Reconstructions
were created by feeding the predicted w-latents from brain ac-
tivity from a held-out test set to the feature-disentangled GAN.
This work is the first to perform neural coding of photorealistic
images using intracranial recordings.

Methodology

We recorded multi-unit activity (Super & Roelfsema, 2005)
with 15 chronically implanted electrode arrays (64 channels
each) in one macaque (male, 7 years old) upon presenta-
tion of images in a passive fixation experiment. We used
two datasets of visual stimuli: (i) face images synthesized by
StyleGAN3 (pretrained on FFHQ) and (ii) high-variety natu-
ral images synthesized by StyleGAN-XL (pretrained on Ima-
geNet). In the analysis, we used linear mapping to evaluate
our claim that the feature- and neural representation effec-
tively encode the same stimulus properties, as is standard
in neural coding (Naselaris, Kay, Nishimoto, & Gallant, 2011;
Güçlü & van Gerven, 2015). A more complex nonlinear trans-
formation would not be valid to support this claim since non-
linearities will fundamentally change the underlying represen-
tations.

In encoding, the neural response per electrode was mod-
eled using kernel ridge regression to find how brain activity
was linearly dependent on the stimulus features. Regulariza-
tion was required to avoid overfitting since we predicted from
feature space. For decoding, multiple linear regression was
used to model how the individual units within feature repre-
sentations were linearly dependent on the brain activity per
electrode.
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Figure 1: For each individual microelectrode, we fit five encod-
ing models to predict its neural response via low and mid-level
feature representations of VGG16 (pretrained for face- or ob-
ject recognition), z-, w- and CLIP latent representations of the
visual stimuli. The representation that resulted in the highest
encoding performance (Student’s t-test) was assigned to each
microelectrode. The distribution of assigned features shows a
complexity gradient where the more low-level representations
are assigned to early brain regions V1 and V4 and more high-
level representations to IT with a preference for w-latents.

Results

Neural encoding

Encoding with low-level, mid-level and latent representations
of images resulted in the well-established complexity gradi-
ent where early representations are mainly predictive of re-
sponses in early visual areas and deeper representations of
more downstream visual areas (Güçlü & van Gerven, 2015;
Freiwald & Tsao, 2010; Chang & Tsao, 2017). As such, we
confirmed that z-, w- and CLIP latent representations indeed
encode high-level information about the visual stimuli and thus
explained the neural responses in the inferior temporal (IT)
cortex which is located at the end of the visual ventral path-
way (Figure 1). Among these latents, w-latents were the best
candidate to predict neural activity to visual stimuli.

Neural decoding

Neural decoding of neural activity via feature-disentangled w-
latents resulted in highly accurate reconstructions that closely
resembled the stimuli in their specific visual characteristics
(Figure 2). Table 1 quantitatively demonstrates the similar-
ity between stimuli and their reconstructions. The contribution
of each visual area was determined by the occlusion of the
electrode recordings in the other two brain areas (rather than
fitting three independent decoders on subsets of brain activ-

Figure 2: Qualitative decoding results. Seven arbitrary but
representative test set stimuli (top row) and their reconstruc-
tions from brain activity (bottom row).

Table 1: Quantitative decoding results. The upper and lower
block display performance when reconstructing face- and nat-
ural images, respectively, in terms of four metrics: cosine sim-
ilarity using MaxPool layer outputs 1, 3 and 5 of VGG16 for
object recognition and between the w-latents of stimuli and of
their reconstructions.

VGG16-1 VGG16-3 VGG16-5 Latent
All 0.6066 0.5192 0.6607 0.5548
V1 0.5435 0.4503 0.5351 0.5022
V4 0.5430 0.4531 0.5323 0.5026
IT 0.5590 0.4718 0.5638 0.5176
All 0.4083 0.2555 0.2497 0.8032
V1 0.3929 0.2223 0.1367 0.7336
V4 0.3790 0.2270 0.1617 0.7614
IT 0.3798 0.3127 0.1692 0.7653

ity). It is reasonable to say that, of the three cortical areas,
area IT resulted in the highest similarity and thus contained
the most information about that representation.

Conclusion
This work leveraged feature-disentangled GANs to under-
stand how visual information is represented in the brain, high-
lighting how unsupervised models can capture the underlying
structure and patterns of visual data so it can be aligned with
biological processes. The high reconstruction performance
achieved by decoding via w-latent space indicates the impor-
tance of feature disentanglement to explain neural represen-
tations of perception, offering a new way forward for the pre-
viously limited yet biologically more plausible unsupervised
models of brain function. These findings have implications
for the advancements of computational models and the devel-
opment of clinical applications for people with disabilities. For
instance, neuroprosthetics to restore vision in blind patients as
well as brain computer interfaces (BCIs) to enable nonmuscu-
lar communication with individuals who are locked-in.
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