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Abstract
Unlike primates, training artificial neural networks (ANNs)
on changing data distributions leads to a rapid decrease
in performance on old tasks. This phenomenon is com-
monly referred to as catastrophic forgetting. In this paper,
we investigate the representational changes that under-
lie this performance decrease and identify three distinct
processes that together account for the phenomenon.
The largest component is a misalignment between hidden
representations and readout layers. Misalignment occurs
due to learning on additional tasks and causes internal
representations to shift. Representational geometry is
partially conserved under this misalignment and only a
small part of the information is irrecoverably lost. All
types of representational changes scale with the dimen-
sionality of hidden representations. These insights have
implications for deep learning applications that need to
be continuously updated, but may also aid aligning ANN
models to the rather robust biological vision.

Keywords: continual learning; catastrophic forgetting; artificial
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Introduction
Our world is inherently sequential. Adapted to this, hu-
mans are successful in continuously learning new skills over
their lifetime. However, most state-of-the-art training proce-
dures for artificial neural networks (ANNs) rely on data be-
ing independent and identically distributed. In settings where
the data distribution changes, networks have been reported
to rapidly forget previous knowledge (Parisi, Kemker, Part,
Kanan, & Wermter, 2019; Hadsell, Rao, Rusu, & Pascanu,
2020). This phenomenon is commonly termed catastrophic
forgetting (French, 1999; McCloskey & Cohen, 1989).

A number of factors influence the degree to which perfor-
mance decreases in sequential learning scenarios: the di-
mensionality of representations (Mirzadeh et al., 2022), pre-
training (Ramasesh, Lewkowycz, & Dyer, 2022), objective
function (S. Li, Du, van de Ven, & Mordatch, 2022; Davari,
Asadi, Mudur, Aljundi, & Belilovsky, 2022) and task similar-
ity (Ramasesh, Dyer, & Raghu, 2020). However, the changes
to the task-relevant representations during continual learning
remain to be fully characterized (see Davari et al. (2022) for
first steps). In this work, we characterize changes in repre-
sentational geometry and their contribution to the observed
decrease in performance. We find that rather than forgetting,
much of the degraded performance can be explained by a mis-
alignment of representations and the readouts of the network.

Analysis
Our model system is a standard four layer convolutional
network The training procedure, task and network archi-
tecture are identical to Zenke, Poole, and Ganguli (2017).
We study catastrophic forgetting in the task-incremental sce-
nario (Van de Ven & Tolias, 2019), initializing a new classi-
fication head every time a novel task is encountered. Af-

ter pretraining the network on CIFAR10 (Krizhevsky & Hin-
ton, 2009), we sequentially train on ten equal task splits from
CIFAR-100. We repeat this procedure 5 times controlling for
the effects of task similarity by randomly assigning each class
to a task (Ramasesh et al., 2020).

We characterise the information present throughout learn-
ing by training diagnostic readouts for all tasks after every
phase of training. A drop in performance, despite adjusted
readout, constitutes a loss of task relevant information. This
scenario constitutes true forgetting. Contrary to this, perfor-
mance loss attributed to misalignment is computed by the dif-
ference in performance between the original readout (t = 0)
and the newly trained diagnostic readouts at every phase of
training. Third, to estimate the extent to which misalignment
is due to rotation, translation, and uniform scaling of an oth-
erwise static geometry, we align representations for each task
after each training phase to the representations immediately
after learning the task (t = 0) with a geometry-preserving Pro-
crustes transformation (Gower, 1975).

Finally, as increasing layer width has been shown to alle-
viate catastrophic forgetting (Mirzadeh et al., 2022), we vary
the width of the final hidden layer to investigate how the differ-
ent components of representational change are modulated by
network capacity.

Results

As expected, we observe effects of catastrophic forgetting, i.e.
a rapid drop in performance of the original readouts as the
network is trained on additional tasks (Fig. 1A, ‘continual’ at
T>0). Notably, however, performance of diagnostic readouts
decreases much less, indicating that the discriminability of the
old classes is indeed preserved, i.e. there is little “actual” for-
getting. The primary cause of decreased performance is read-
out misalignment, the extent of which is shown by the large
difference between ‘continual’ performance and performance
measured at the diagnostic readouts (Fig. 1A, ‘diagnostic’), in
line with similar previous analyses (Davari et al., 2022).

Does misalignment preserve the original representational
geometry? If so, we’d expect that Procrustes alignment should
yield performance as good as the linear diagnostic readouts.
We observe that aligning representations accounts for approx-
imately half of the performance difference between continual
and diagnostic readouts (Fig. 1 A, ‘procrustes’). Therefore,
misalignment can be characterized as a combination of geom-
etry preserving and deforming changes of representations.

An open question that remains from our and previous work
is whether the comparably good performance of the diagnos-
tic readout is explained by transfer learning based on fea-
tures learned for earlier tasks in the sequence. Indeed, we
observe that the features learned for previously encountered
tasks transfer to unseen tasks (‘Feature Transfer’ in Fig. 1).
Yet, transfer cannot fully explain the performance observed
with diagnostic readouts, as a clear discontinuity in the di-
agnostic readout performance trajectory from before to after
training a new task (t = 0) can be seen. This suggests that
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Figure 1: A: Classification accuracy averaged over the ten tasks sampled from CIFAR100. Prior to averaging, task performance
trajectories are temporally aligned to task onset such that the x-axis reflects performance after t additional tasks have been
learned. The shaded area around each line indicates the standard error computed over five repetitions of the procedure. B:
Mean class representations for a task split. Task mean representations from all phases are projected to a shared two dimensional
space using multidimensional scaling (Torgerson, 1952). Shown are representation vectors directly after learning the task, after
learning 5, and after learning 9 additional tasks (left to right). C: Mean performance over all tasks at task onset (t = 0). Network
size does not have an effect on how well tasks are learned initially. D: Performance loss measured as the difference between
performance at t = 0 and the mean over performances measured at all t > 0. Standard error for additional networks is computed
over three simulations.

newly learned features better support the new task. This ad-
ditional information stays preserved in the network over learn-
ing of multiple additional tasks, as evidenced by the fact that
diagnostic readout performance stays above the performance
measured at t =−1 for the subsequent phases (t > 0).

Finally, characterizing the influence of network size in con-
tinual learning with our new analysis techniques, we find that
varying the width of the final hidden layer attenuates all three
measures of representational change. Yet, we still observe
small amounts of changes to the representational geometry
and misalignment with the readouts of the respective networks
(Fig. 1 C & D).

Discussion
In characterizing representational changes in a neural net-
work during continual learning, we observed that misalign-
ment of the pre-readout representations with the task read-
outs explains large parts of performance degradation that is
commonly referred to as ‘catastrophic forgetting’. Interest-
ingly, only a small amount of performance cannot be linearly
read out and is irrecoverably ‘forgotten’.

Many algorithms addressing catastrophic forgetting rely on
restricting learning at synapses that encode information for
previous tasks (Zenke et al., 2017; Kirkpatrick et al., 2017)
or regularize learning of representations for new tasks (Z. Li
& Hoiem, 2017) in order to not lose information relevant for
the previous tasks. We argue that information in hidden layers
is largely preserved, even without restricting learning trajecto-
ries or placing constraints on representations the network is

allowed to learn. This is especially prominent in larger net-
works. We hypothesize that catastrophic forgetting may in-
stead be efficiently addressed by solving the problem of read-
out misalignment without influencing the learning of new tasks
(See also: (Lesort, George, & Rish, 2021)). Indeed, there may
be benefits to not restricting learning of representations more
than necessary, as restrictions to the learning dynamics of the
network may lead to decreased plasticity or sub-optimal solu-
tions over long sequences of tasks.

Lastly, the primate visual system is successfully able to
learn new tasks without exhibiting forgetting of old tasks. If
we are to use ANNs as models of biological vision, then the
discrepancies in the learning dynamics of the two systems re-
main to be addressed. Future work will test the currently de-
scribed analysis framework for characterising representational
changes in continual learning on biological data to further un-
derstand where, how, and when the visual system copes with
the newly arriving information.
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