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Abstract

Recent evidence suggests that readers optimize low-level
visual information following the principles of predictive
coding. Based on a transparent neurocognitive model,
we postulated that redundant visual signals are removed,
allowing readers to focus on the informative aspects of
the visual percept, i.e., the orthographic prediction error
(oPE). Here we test alternative oPE implementations by
assuming all-or-nothing signaling units based on multi-
ple thresholds (i.e., output modality of a neuron). Further,
we tested if predictions are signaled from one or multi-
ple units. For model evaluation, we compared the new
oPEs with each other and against the original formula-
tion based on behavioral and electrophysiological data
(EEG at 230, 430 ms). We found the highest model fit for
the oPE with a 50% threshold integrating multiple predic-
tion units for behavior and the late EEG data. The early
EEG data was still explained best by the original hypoth-
esis. Thus, the new formulation is adequate for late but
not early neuronal signals indicating that the represen-
tation, which likely implements lexical access, changes
over time.
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Introduction

Efficient readers read up to 300 words per minute (Brysbaert,
2019) by picking up visual information every 200-250 ms
(Gagl, Gregorova, et al., 2022; Siegelman et al., 2022). To
achieve fast access to word meanings, readers implement ef-
ficient representations (Gagl et al., 2020) and integrate words
in their sentence/text context to generate expectations for up-
coming words (Hawelka, Schuster, Gagl, & Hutzler, 2015;
Heilbron, Richter, Ekman, Hagoort, & de Lange, 2020; Hof-
mann, Remus, Biemann, Radach, & Kuchinke, 2022).

Here we revisit our formulation of efficient representations
of visual information based on knowledge-based orthographic
expectations (Gagl et al., 2020) following the principles of pre-
dictive coding (Rao & Ballard, 1999). In this implementation,
we assumed signaling of graded values on the prediction and
prediction error level. Here, we tested an alternative imple-
mentation considering a previously neglected constraint, i.e.,
neurons implement a binary all-or-nothing signal and cannot
implement a graded signal (Qin et al., 2020; Saszik & DeVries,
2012). We used thresholds (from 10-90% in 10% steps) to im-
plement the adaptation (see examples in Fig. 1).

With this change, new hypotheses concerning the structure
of a potential neuronal circuit evolve. We here implement sim-
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Figure 1: Model overview. (A) Structure assuming multiple
prediction units (i.e., mean prediction) and (B) a single predic-
tion unit (i.e., binary prediction) with orthographic prediction
error examples for “g” from multiple thresholds.

plified assumptions compared to previous models (Bastos et
al.,, 2012). We assume that the bottom-up input to a predic-
tion error unit is the information of one pixel from a word image
(Fig. 1). In line with Gagl et al.(2020), readers inhibit the sen-
sory input when they predict the sensory input based on or-
thographic knowledge. Here, a question arises from assuming
all-or-nothing units: Do the prediction error units integrate sig-
nals from one or multiple prediction units? We implement mul-
tiple units (i.e., a graded prediction based on a mean; when
one of multiple prediction units fires, the prediction is weaker
cp. to when all fire) to test if one integrates prediction signals
across units (Fig. 1A). In contrast, assuming one prediction
unit, we implement a binary prediction (Fig. 1B) as then the
prediction would be there or not. Here, we contrast the orig-
inal model with the two structural variants of the new imple-
mentation for each threshold based on three datasets (lexical
decision behavior, EEG at posterior sensors around 230 ms,
and frontal sensors around 430 ms).

Method

We adopt the model comparison analysis procedure and three
datasets from Gagl et al. (2020) to evaluate the new or-
thographic prediction error (0PE) variants (behavioral lexical
decision data; EEG from posterior electrodes 230 ms and
frontal electrodes 430 ms after stimulus onset; find here:
https://osf.io/d8yjc/). All stimuli had five letters (Behaviour:
800 Words & non-words; EEG: 200 Words & non-words),
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and participants were typically reading native speakers (Be-
haviour: N = 35; EEG: N = 31).

To identify the best model for the three datasets, we imple-
ment both variants from Figure 1 using thresholds from 10-
90% of the signal in 10% steps (see examples in Fig. 1). In
other words, a prediction error for a pixel was only generated
when the difference between the sensory input and the pre-
diction exceeded the threshold (e.g., if the sensory input is 1
and the prediction is .2, the prediction error will be 1 as the
50% threshold is lower at .5 than the difference of the pre-
diction and the sensory input with .8; if the prediction, in this
case, is .6 the prediction error will be 0). We summed gray
values from the prediction error images to obtain a numeric
predictor for each stimulus. With this measure, we estimated
linear mixed models (Bates, Machler, Bolker, & Walker, 2014),
including the oPEs as predictors to describe response times
and EEG amplitudes. Also, the previous analysis (see Gagl et
al. 2020) suggested estimating the interaction of the oPE and
word lexicality (i.e., word or non-word) for the later time win-
dow and the behavioral data (additional parameters for EEG
data: lexicality, & number of pixels, i.e., amount of the sensory
input; for the behavioral data: word/non-word, number of pix-
els, word frequency, and decision accuracy). For the model fit
comparison, we used the Akaike Information Criterion (AIC) in
relation to the null model without an oPE (Akaike, 1973).

Results

Correlations between the new and the original oPEs in both
stimulus sets showed low similarity for the low percentage
thresholds (10-20% thresholds, range: r = .07 to .32) and
high similarity for the other implementations (30-90% thresh-
olds range: r = .52 to .92).
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Figure 2: Model comparisons results based on (A) lexical de-
cision response times for the original oPE (solid black line)
and new implementations, including all thresholds and both
prediction assumptions. All AICs presented here are against
a version of the linear mixed model without an oPE predictor
(Null hypothesis, HO). (B) Same but for EEG amplitudes at
230 ms and 430 ms. The AIC difference for the original oPE
is presented as solid (230 ms) and dotted line (430 ms).

Behavioral results. Behavioral evaluations indicated the
highest model fit at a threshold of 50% for the Mean predic-
tion with only one AIC point difference to the Binary prediction
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(see Fig. 2A). Generally, higher model fits are found for the
Mean prediction. Also, compared to the original oPE, all but
two oPEs (10 & 90% thresholds; 2 of 9) based on the Mean
prediction and all but seven (lower AICs for 7 of 9) based on
the Binary prediction showed higher model fits.

Electrophysiological results. The original oPE had the
highest model fit at amplitudes at 230 ms. Still, all but one new
oPE formulation (10% threshold, binary prediction) increased
the model fit significantly in contrast to the null model (i.e., AIC
difference > 3; see Fig. 2B). Again, oPEs based on the Mean
prediction had higher model fits in all but one case (40%).

At 430 ms, the model comparison pattern was highly similar
to the behavioral results (cp. Binary: r =.97; Mean: r = .93 vs.
Binary: r = .76; Mean: r = .75 for the 230 ms time window).
Although the general AIC differences have been smaller than
in the early time window, we found a clear peak for the 50%
threshold oPE of both prediction assumptions that was higher
cp. to the original oPE. Again, we found higher AIC differences
for oPEs based on the Mean prediction assumptions (6 of 9).

Discussion

The exploration of alternative oPE formulations, increasing
neuronal plausibility (i.e., all-or-nothing binary oPE), and in-
vestigating simple neuronal architectures (mean and binary
predictions), found that an all-or-nothing binary oPE imple-
mented with a 50% threshold and a prediction that integrates
multiple units (Mean prediction) best explained behavioral per-
formance and brain potentials at 430 ms (Frontal sensors).
Correlations of the model comparison results from the very
different data (i.e., different measures, participants, and stim-
uli) indicated high similarity. Comparing Mean and Binary pre-
diction assumptions, we found high similarity and only small
model fit differences for the best fitting model (at 50% thresh-
old). Still, for most other thresholds, mean predictions resulted
in higher model fits. In contrast, the original oPE implementa-
tion explained the early brain responses best. This difference
(i.e., early vs. late) could indicate a transformation of the oPE
representation over time.

The critical difference between the behavior, late and early
brain potentials is that only for the earlier time window, readers
did not achieve lexical access yet. The 50% threshold oPE,
thus, likely represents the final form of the oPE representa-
tion that might allow accessing a lexical unit. To get a clearer
picture of the change from the original to the 50% threshold
oPE, new analyses need to investigate the entire EEG time
course, including potential other processes involved before
lexical access (Gagl, Weyers, & Mueller, 2021; Gagl, Rich-
lan, et al., 2022; Lerma-Usabiaga, Carreiras, & Paz-Alonso,
2018; White, Palmer, Boynton, & Yeatman, 2019). A possible
mechanism to explain the oPE change one needs to identify
an architecture that can remove weak prediction errors of the
graded original oPE and amplify prediction errors at the 50%
threshold. Thus, readers likely use binary oPE representa-
tions to access word meanings that originate from a graded
oPE representation.
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