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Abstract

Reinforcement learning requires associating rewards
with one or more of the states or actions that
preceded them. The question of exactly which states
or actions to associate with each reward is referred to
as the “credit assignment problem”, and better
solutions result in more efficient learning. In humans,
credit assignment is informed by knowledge of the
causal structure of the world. Here, we adapt a
“structured” credit assignment task from the human
literature for use with head-fixed mice. In this task,
rewards of one type (“controllable”) depend causally
on the mouse’s actions, while another distinguishable
type (“distractor”) is independent of those actions. We
present behavioral evidence that mice, like humans,
adopt a strategy that is partially structure-sensitive:
they update their behavior based on rewards of both
types, but they update more strongly to the
controllable reward. This work opens the door to
investigations of the neural mechanisms of structured
credit assignment using the wide range of tools that
are available in head-fixed mice.

Introduction

Credit assignment in artificial agents typically uses a
recency heuristic: credit for a reward is assigned to
all states and actions that preceded it recently. This
heuristic has intuitive appeal, however it is limiting in
certain types of situations: for example when a long
time delay occurs between an action and the reward
that it causes, or when there are structured
relationships governing which types of actions are
able to cause which types of rewards. Developing
new credit assignment methods for these and other
situations is an active area of machine learning
research (Harutyunyan et al., 2019; Mesnard et al.,
2020; Chelu et al., 2022).

The brain’s strategies for credit assignment
remain largely unknown. While there are data
indicating that recency indeed plays a role (Yagishita
et al.,, 2014; Lehmann et al.,, 2019), there is also
evidence that causal task structure is taken into
account (Gershman, Pesaran, and Daw, 2009;
Jocham et al.,, 2016; Moran, Dayan, and Dolan,
2021). This “structured” credit assignment is
typically studied in humans, limiting the range of
neuroscience tools that can be applied. Here, we
adapt a structured credit assignment task from the
human literature, the “distractor rewards” task
(Jocham et al., 2016), for use with head-fixed mice.
We find that mice, like humans, learn using both
recency-based as well as structured credit
assignment.
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Results

Distractor rewards task for mice

Mice perform the task while head-fixed with their
forepaws on a wheel, indicating their choice on
each trial by rotating the wheel either to the left or to
the right (Burgess et al., 2017). The rig contains two
reward spouts, each containing sweet liquid reward
of a different flavor (cherry and grape Kool-Aid;
Figure 1a). After the mouse makes its choice, each
of these spouts delivers its reward with a certain
probability. Reward probabilities are independent
between the two spouts, so in total there are four
possible outcomes: no reward, cherry only, grape
only, or both (Figure 1b). For each mouse, one flavor
is designated the “controllable” flavor, while the
other is designated the “distractor”. The
contingencies of the controllable flavor follow a
probabilistic reversal learning schedule: on each trial
one action is rewarded with high probability while
the other is rewarded with low probability, and these
probabilities swap at unpredictable intervals. With
respect to the distractor flavor, the reward
probability is constant on all trials, regardless of the
mouse’s choice (Figure 1c).
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Figure One: Distractor rewards task for mice
This  difference between controllable and

distractor rewards allows our task to assay structure
in credit assignment. We expect an agent that does
not use task structure to show noncontingent
recency-based credit assignment: reinforcing
actions that are followed by a reward and switching
away from actions that are not, regardless of that



reward’s flavor. In contrast, we expect an agent that
uses structured credit assignment to reinforce only
actions that are followed by reward a controllable
reward, but switch away from those that were not,
regardless of the presence or absence of the
distractor reward.
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Figure Two: Mice show structured as well as
noncontingent credit assignment

We characterize these behavioral patterns using a
trial-history regression model (Lau & Glimcher,
2005). This model fits separate weights for each
outcome type (none, controllable, distractor, both),
which quantify the tendency to repeat (vs. switch
away from) recent actions that were followed by that
outcome. We first apply this approach to two
synthetic datasets: one from a “structure naive”
agent that learns based on recency alone (Figure
2a), the other from a “structure savvy” agent that
learns only from the controllable reward (Figure 2b).
The fit regression weights show the expected
patterns: the structure-naive agent earns large
positive weights for all three rewarding outcomes
and negative weights for the no-reward outcome,
while the structure-savvy agent shows positive
weights for the “controllable” and “both” outcomes
and negative weights for the “distractor” and
“no-reward” outcomes. Next, we apply this analysis
to a mouse behavioral dataset (198 behavioral
sessions from twelve mice), fitting a separate set of
weights for each mouse (Figure 2c). We summarize
the data for each mouse by computing a
“controllable index” (the total difference between the
weights for the controllable outcome and the
no-reward outcome) as well as a “distractor index”
(the total difference between the weights for the
distractor outcome and the no-reward outcome).
For mice, the controllable index was larger than the
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distractor index (Figure 2d, points are above the
diagonal), indicating that they took task structure
into account when performing credit assignment. At
the same time, the distractor index was greater than
zero (Figure 2d, points are to the right of the vertical
axis), indicating that mice also perform
noncontingent credit assignment. We checked both
of these results using a conditional randomization
test that allows inferring causal effects despite the
statistical issues arising from correlated timeseries
(Harris, 2020), and found them to be statistically
significant (p<0.001).

Conclusions and Directions

We found that mice, like humans, use both
structured as well as noncontingent credit
assignment in the distractor rewards task. This
opens the door to investigations of the neural
mechanisms of credit assignment using the wide
range of tools that are available for head-fixed mice.
We are in the process of collecting a dataset of
electrophysiological recordings using high-density
Neuropixels probes (Jun et al., 2017) surveying both
frontal cortex (secondary motor, anterior cingulate,
prelimbic, infralimbic, medial orbital, ventral orbital,
and lateral orbital) and striatum (caudoputamen and
nucleus accumbens), the details of which will be
reported elsewhere.
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