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Abstract
Human brain activity collected from fMRI is measured
in high voxel dimensions. However, the intrinsic dimen-
sionality of neural population activity is often much lower
than this measured dimensionality. How intrinsic dimen-
sionality is modulated by stimuli and tasks remains un-
known. Here, we explore this question during viewing
of two naturalistic movies and during rest. We used T-
PHATE, a nonlinear manifold learning approach designed
for high-dimensional, timeseries data (Busch et al., 2023),
to estimate the intrinsic dimensionality of fMRI activity
across the brain using searchlights. Visually responsive
brain regions showed high dimensionality during both
movie viewing and rest. However, other brain regions
had lower dimensionality during movie than rest. Thus,
movie viewing appears to collapse the dimensionality of
non-selective brain regions, whereas in a baseline state
there is relatively unconstrained dimensionality across
the brain.
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Introduction
The brain encodes rich, dynamic information about the world
in distributed neural population codes that communicate via
both local and global patterns of activity. Modern neuroimag-
ing studies collect high-throughput samples of neural activity
across experimental conditions to understand where and how
different stimuli, tasks, and behaviors are processed in the hu-
man brain.

Direct neural recordings in nonhuman primates have shown
that the measured dimensionality of neural activity generally
exceeds the activity’s intrinsic dimensionality — that is, the de-
grees of freedom required to describe the overall signal of the
population — as there is substantial covariance among neu-
ral units tuned toward particular stimuli or tasks (Cunningham
& Yu, 2014). The intrinsic dimensionality of neural popula-
tion activity can provide insight into the complexity of the neu-
ral processing underlying a given task (Altan, Solla, Miller, &
Perreault, 2021; Jazayeri & Ostojic, 2021). For instance, in-
trinsic dimensionality can be determined by incoming stimuli
(Churchland et al., 2010; Mazzucato, Fontanini, & La Camera,
2016), ongoing behaviors (Stringer et al., 2019), and complex
latent variables like experience and expectations (Jazayeri &
Ostojic, 2021).

How is the intrinsic dimensionality of human brain activity
altered by engaging in a task? In the past, estimating the in-
trinsic dimensionality of single-subject, task-based fMRI, such
as during naturalistic movie viewing, has been hampered by
methods unsuited for disentangling spatio-temporal signal and
noise in the data. We use a nonlinear manifold learning ap-
proach called T-PHATE to estimate and compare intrinsic di-
mensionality across brain regions and between movie viewing
and rest.

Materials and methods

Movie dataset We analyzed fMRI data from 12 subjects (7
female, age 18 to 32 years) who viewed two short, silent
movies (“Aeronaut” and “Mickey”) while having their brains
scanned. These same subjects also completed a short rest-
fixation scan. More details about data collection and prepro-
cessing are described in (Yates, Ellis, & Turk-Browne, 2023).

Reliability of neural responses To identify brain areas that
reliably responded to the movies across subjects (Nastase,
Gazzola, Hasson, & Keysers, 2019), we used a leave-one-
subject-out intersubject correlation (ISC) analysis in volumet-
ric searchlights (radius = 5) across the entire brain.

Manifold learning We recently introduced T-PHATE (tem-
poral potential of heat diffusion for affinity-based transition
embedding), a nonlinear manifold learning method designed
to learn low-dimensional embeddings of high-dimensional,
spatio-temporally noisy timeseries data (Busch et al., 2023).
The T-PHATE algorithm learns a multi-view manifold: one view
models the data’s time-varying properties and the other view
learns the data’s geometry via the PHATE manifold learning
method (Moon et al., 2019). These views are then combined
into a single T-PHATE diffusion operator, which defines a man-
ifold based on both dynamic and geometric data properties.

Intrinsic dimensionality We estimated intrinsic dimension-
ality (ID) over the T-PHATE diffusion operator. In the T-PHATE
algorithm, the diffusion operator is powered by t, a parameter
that represents the intrinsic dimensionality of the data. t pro-
vides a trade-off between encoding of local versus global in-
formation in the T-PHATE embedding space, and is optimized
by minimizing the von Neumann entropy of the diffusion op-
erator as a function of various values of t. This provides a
measure of the number of significant eigenvalues of the dif-
fusion operator. For more information about this calculation,
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Figure 1: (A) Searchlight ISC was computed with leave-one-out cross-validation and presented as the average across subjects,
thresholded arbitrarily at r = 0.1. (B) Intrinsic dimensionality for each searchlight pattern was computed with T-PHATE at the
subject level, and presented as the group average across subjects. (C) Spatial maps of ISC and dimensionality calculated from
independent data show a strong positive correlation. Each point represents a single searchlight.

see (Moon et al., 2019).
To probe how task conditions alter the ID of brain activity

patterns across the brain, we applied T-PHATE in searchlights
as done for the ISC analysis above. All searchlights had 1331
voxels, which places an upper limit on the dimensionality of
a searchlight pattern. All analyses were performed indepen-
dently for each subject and task.

For comparison, we repeated our analyses by estimating ID
with two alternative methods: vanilla PHATE (which excludes
the explicit temporal view) and PCA (retaining the number of
components that capture 90% variance).

Figure 2: (A) T-PHATE ID of each searchlight during rest. (B)
Average ID with T-PHATE, PHATE, and PCA across subjects
and searchlights, for each task. (C) Difference in T-PHATE ID
for rest minus movie tasks, thresholded at qFDR < 0.05).

Results
In both “Aeronaut” and “Mickey” movies, searchlight activity
patterns showed the highest ISC (Figure 1A) and ID (Figure
2B) in visual regions, broadly defined. This suggests that, dur-
ing movie viewing, ISC and ID are both selective to regions
that are engaged by the task (in this case a silent movie). We

tested their relationship explicitly by correlating ISC and ID
over searchlights across the entire brain. We performed this
analysis between movies — e.g., corr(Aeronaut ID, Mickey
ISC) — to ensure the independence of the measures and un-
derstand the generalizability of their relationship. There was a
robust positive correlation between ISC and ID during movie
viewing (Spearman’s ρ = 0.74, p < 0.001) (Figure 1C).

Overall, ID was higher across the brain during rest
vs. movie-viewing (Figure 2A). This pattern replicated with
PHATE and PCA (Figure 2B). Manifold learning methods tend
to inflate estimates of ID in the presence of noise or data non-
linearities, if not properly modeled (Altan et al., 2021), which
would explain why both PHATE and PCA show higher abso-
lute ID than T-PHATE.

To quantify where in the brain dimensionality differs be-
tween tasks, we subtracted the ID maps for each of the movies
from rest for every subject, resulting in 2 sets of 12 difference
maps, respectively. The reliability of these differences was as-
sessed with a one-sample t-test across subjects within movie,
thresholded at qFDR < 0.05 (Figure 2C). The overall higher
dimensionality of rest was driven primarily by regions outside
of visual cortex (which showed similarly high dimensionality in
both rest and movie conditions). These mostly non-visual re-
gions showing reduced dimensionality during movies included
ventromedial prefrontal cortex, temporoparietal junction, and
cingulate cortex.

In sum, the naturalistic task of movie viewing drives reli-
able, high-dimensional fMRI activity in visual regions, but may
dampen the dimensionality of other regions that are uncon-
strained and high-dimensional at rest. We are extending this
work to test whether this pattern of collapsed dimensional-
ity in non-selective cortex generalizes to the auditory modality.
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