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Abstract 
Mice are increasingly used to study the neural circuit-
level basis of behavior, often with the ultimate goal to 
extrapolate these insights to humans. To generalize 
insights about neural functioning between species, it is 
crucial to first ensure correspondence in behavioral and 
cognitive strategy. Here, we analyzed decision-making 
behavior in both humans and mice, and identified the 
same cognitive strategy of history-dependent evidence 
accumulation. Specifically, individual differences in 
choice repetition were explained by a history-dependent 
bias in the rate of evidence accumulation – rather than 
its starting point. Evidence integration over multiple 
temporal scales thus reflects a fundamental aspect of 
decision-making, conserved across mammalian species. 
These findings set the stage for linking the computations 
of decision-making to neural dynamics at the single-cell 
and population levels. 
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Introduction 
Human observers’ previous choices consistently bias 
their subsequent evidence accumulation (Urai et al., 
2019). Choice history signals thus seem to bias the 
interpretation of current sensory input, akin to shifting 
endogenous attention toward (or away from) the 
previously selected interpretation. This decision-making 
strategy, which robustly captures individual differences 
across tasks, may be exhibited across mammalian 
species - thereby providing insights into the shared 
neural circuit mechanisms of cognition. 

Recent advances in training mice to perform 
complex tasks, combined with powerful neural 
measurement tools, have positioned mice as a popular 
model species in cognitive neuroscience. An important 
assumption is that behavior and computational 
mechanisms are preserved across species. However, 
this assumption is rarely explicitly tested, creating 
challenges in the translatability of neuroscience findings 
to humans (Barron et al., 2021).  

Here, we analyze choice behavior of 100 mice 
performing a decision task and show that these animals 
exhibit the same history-dependent computational 

strategy as humans. This sets the stage for 
investigating the circuit-level neural basis of choice 
history biases. 

Methods 
We analyzed data from 100 mice performing a visual 
decision-making task (The International Brain 
Laboratory et al., 2021) (Figure 1a). We selected 
sessions where mice had mastered the task. but before 
they were exposed to structured autocorrelation in 
stimulus sequences - ensuring that behavioral choice 
history biases reflected endogenous biases. Outlier 
RTs (< 0.1s and > 3s) were discarded. 

We then fit hierarchical Drift Diffusion Models 
(Fengler et al., 2021; Wiecki et al., 2013) with a history-
dependent starting point and drift bias, following the 
same fitting procedures as in our previous work on 
humans (Urai et al., 2019; Urai & Donner, 2022). 
Models with both history-dependent bias terms fit best. 

After behavioral training, extracellular neural data in 
parietal cortex (VISa, VISam) was recorded using 
standardized pipelines (The International Brain 
Laboratory et al., 2022).  

Data and code are available at github.com/anne-
urai/mouse_history_ddm.  

Results 
Mice tended to repeat their previous choices, both after 
rewarded and unrewarded trials (Figure 1b).  
 

 
Figure 1. History bias in decision-making. (a) Visual 
decision task.  (b) Psychometric curves shift in the 
direction of the previous choice, independently of the 
previous reward. 
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Computational strategies across species 
Choice repetition biases were explained by the same 
computational principle across species: a history-
dependent change in the rate of evidence 
accumulation, rather than its starting point (Figure 2a). 
Specifically, only history-dependent drift bias (not 
starting point) captured individual differences in 
repetition behavior (Figure 2b,c). While behavior can be 
biased by several (typically 3-5) past choices (Urai & 
Donner, 2022), we here use the immediately preceding 
choice as a proxy for such longer-timescale integration. 
 

 
Figure 2. Mice and humans use the same decision-
making strategy. (a) In the DDM, noisy sensory 
evidence is accumulated over time until the resulting 
decision variable reaches one of two bounds. 
Repeating this process over many trials yields RT 
distributions. Orange (left): bias in starting point. Purple 
(right): bias in drift. (b) In humans, choice history bias 
reflects a change in drift bias (Urai et al., 2019). (c) In 
mice, choice history bias reflects a change in drift bias.  

Neural dynamics of history coding 
We analyzed extracellular recordings in posterior 
parietal cortex (PPC; VISa, VISam), acquired using 
standardized pipelines (The International Brain 
Laboratory et al., 2022) (Figure 3b,c). Note that during 
recording sessions, animals performed a task that 
includes biased stimulus blocks (The International Brain 

Laboratory et al., 2021, 2022) and were no longer naïve 
to the existence of this task structure. Here, we use only 
the first 90 trials with a 50:50 stimulus prior. 
 

 
 
Figure 3. Preliminary neural recordings. (a) Example 
neurons in left parietal cortex (VISa/VISam) encode the 
animal’s previous choice. (b) Targeted recording using 
Neuropixels probes, shown on a coronal view of the 
mouse Allen Atlas (Wang et al., 2020). This recording 
path goes through cortex, hippocampus and thalamus. 
(c) Anatomical reconstruction of the probe tract, 
indicated by red dye.  
 
Neurons in PPC encoded animals’ previous choice, as 
previously reported in mice (Hwang et al., 2017), rats 
(Akrami et al., 2018) and humans (Urai & Donner, 
2022). Interestingly, there is a variety of ways in which 
neurons encode previous choices (Figure 3a): some 
neurons show sustained previous choice coding 
throughout the trial (e.g. neuron 1), while others mostly 
alter their sensory response (e.g. neuron 3), or a 
combination of the two (e.g. neuron 2). This variety of 
neural response profiles likely plays a role in the circuit-
level mechanisms by which choice history is integrated 
into the next decision. 

Conclusion 
Evidence accumulation over multiple temporal scales 
reflect a fundamental aspect of decision-making, 
conserved across mammalian species. Future work will 
explicitly link neural activity at the single-cell and 
population levels to trial-by-trial variations in drift bias. 
We also aim to further explore the effects of slow drifts 
in decision criterion (Gupta & Brody, 2022) and 
engagement states (Ashwood et al., 2022) on choice 
history biases and their neural correlates.  
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