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Abstract
Intuitive physical reasoning is one of the hallmarks
of common-sense intelligence. We explore whether
a contemporary machine learning model that can pro-
duce photo-realistic images demonstrates this aspect of
common-sense visual intelligence. Specifically, we in-
vestigate whether DALL-E 2 (a state-of-the-art image gen-
erative model) has sufficient physical representations to
generate plausible real-world images. We evaluate DALL-
E’s intuitive physics in four fundamental domains: stabil-
ity, mass, refraction, and shadow. We find that DALL-E’s
creations are more congruent with human ratings in the
domain of optics (refraction and shadow), than in physi-
cal dynamics (stability and mass).

Keywords: Intuitive physics; Image generation; Generative AI;
Machine learning; Cognitive science

Introduction
The massive scaling of large pre-trained AI models has
prompted researchers to claim that AGI–the holy grail of ar-
tificial intelligence–is within reach (Bubeck et al., 2023). Yet
one recurring criticism of contemporary large machine learn-
ing models is that they lack common-sense intelligence (Lake
et al., 2017; Marcus et al., 2019). It is generally believed
that intuitive physics is a foundational component of common-
sense intelligence (Zhu et al., 2020; Spelke et al., 1992).

Currently, intelligence benchmarks lag behind the rapid
pace of AI model releases. Recent advances in image gen-
eration provide an opportunity to evaluate the physical rea-
soning abilities of large machine learning models. This paper
develops a novel methodological approach to benchmarking
the physical reasoning abilities of image generation models.
We explore DALL-E 2, a diffusion model created by OpenAI in
2022 (Ramesh et al., 2022).

DALL-E was not explicitly programmed to have physical
reasoning abilities, but the possibility that certain capabilities
can spontaneously emerge is not without precedent in large
pretrained models (Wei et al., 2022). Despite deficiencies in
relational understanding (Conwell & Ullman, 2022) and ge-
ometric inconsistencies (Farid, 2022), DALL-E scores very
highly on photo-realism and user preference (Ramesh et al.,
2022). Critics have previously argued that pixel-level repre-
sentations cannot model real-world physical dynamics (Ull-
man et al., 2018). We analyze whether large-scale text-image
training implicitly equips DALL-E with knowledge grounded
in real-world physics in four fundamental domains: stability,
mass, refraction, and shadow.

Methods
We evaluate the physical realism of imagery generated by
DALL-E compared to real-world photographs in four domains:
mass, stability, refraction, and shadow. We use prompts that
isolate physical dimensions and provide limited additional in-
formation (see Figures 1 and 2 for example stimuli). In Ex-
periment 1 we generate a set of toppling tower stimuli with
varying physical stability using the prompts “A(n) (un)stable

(a) Stable ground truth (b) Unstable ground truth (c) Stable DALL-E (d) Unstable DALL-E

(e) Heavy ground truth (f) Light ground truth (g) Heavy DALL-E (h) Light DALL-E

Figure 1: Example stimuli from mass and stability experi-
ments, including ground truth and DALL-E generated images.

tower of Jenga blocks.” Experiment 2 evaluates DALL-E’s rep-
resentation of object mass. Heavy and light stimuli are gener-
ated using the prompts “A smooth lightweight (or heavy) red
ball on a bed.” The first two experiments consist of 90 im-
ages each (10 ground truth + 80 DALL-E). Experiments 3 (re-
fraction) and 4 (shadow) use DALL-E’s in-painting tool to al-
ter real-world photographs. To investigate refraction, we cre-
ated a dataset using a glass sphere that inverts and refracts
the surrounding scene. We photographed the glass sphere
in 40 different natural scenes and used the in-painting tool
(Figure 2c) to erase the sphere’s scene representation and
reconstruct it with DALL-E using the prompt: “glass sphere.”
The refraction dataset contains 200 total images (40 ground
truth + 160 DALL-E; we use all four DALL-E reconstructions
per real-world image). We followed a similar process to cre-
ate the shadow dataset, taking photographs of a single object
on a desk with a directed light-source (from either the right or
left side). We then erased evenly around the object to avoid
biasing the position of the shadow (Figure 2f). The dataset

(a) Refraction ground truth (b) Refraction DALL-E (c) Refraction in-painting

(d) Shadow ground truth (e) Shadow DALL-E (f) Shadow in-painting

Figure 2: Example stimuli from refraction and shadow experi-
ments, including ground truth DALL-E generated images, and
in-painting technique.
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Figure 3: Distributions of human ratings for generated and ground truth stimuli in each experiment. The X-axis represents the
human intuitive physics ratings from 1 to 7. The Y-axis is the proportion of observations made per image-group from 0 to 0.5.
(Curves are smoothed for clarity using a bw adjust = 1.5 in the Seaborn libarary’s KDE plot)

contains 100 images (20 ground truth + 80 DALL-E). For all
images (including the ground truth), we replace the DALL-E
signature in the bottom right with an average of the colors di-
rectly surrounding the region.

DALL-E generated images are interleaved with ground truth
images in four studies on Amazon Mechanical Turk. We se-
lect US-based participants with approval rate > 95% for >100
HITs. Participants are instructed to rate a named physical
characteristic in all images on a discrete scale from 1 to 7. In-
structions include examples on both poles for all experiments.

Results
Figure 3 plots the distributions of human intuitive physical
judgments on all generated and ground truth images for each
experiment. In all analyses, we remove outlier participants
whose mean ratings lie more than two standard deviations
away from the mean across all participants (Miller, 1991). We
note that more conservative thresholds (e.g. using three stan-
dard deviations) fail to remove any outliers; our approach ex-
cludes 18, 16, 38, and 16 participants who did not meet the
criteria. The final sample sizes for the four experiments (mass,
stability, refraction, shadow) were 270, 245, 558, and 311, with
total judgements of 841, 805, 1713, and 815, respectively.

Experiment 1: Stability Participants rated real-world and
generated Jenga towers on a stability scale ranging from 1
(very unstable) to 7 (very stable). We find no meaningful
difference between the unstable and stable generated stim-
uli. The mean ratings for images generated with the sta-
ble and unstable prompts are 5.2 and 4.7, compared to 6.4
and 4.2 for ground-truth stimuli. Using the two-sample Kol-
mogorov–Smirnov (KS) test, we report a significant difference
between the ratings on images generated with the stable vs.
unstable prompt (0.12, p = 0.003), but the Jensen-Shannon
divergence test reveals a divergence of only 0.086.

Experiment 2: Mass Participants rated real-world and gen-
erated images of a weighted ball on a bed on a scale rang-
ing from 1 (very light) to 7 (very heavy). Using a KS test,
we find no significant difference between the distributions for
light (mean = 3.6) and heavy (mean = 4.1) generated stim-
uli (0.09, p = 0.096), suggesting DALL-E does not diferen-
tially represent object mass. The Jensen-Shannon divergence
between light and heavy distributions is 0.065. Ground truth
heavy and light have mean ratings of 3.3 and 5.0.

Experiment 3: Refraction Next, we evaluate the refraction
experiment, in which participants rated the physical validity
of scene representations inside real-world (mean = 5.1) and
generated glass spheres (mean= 4.7) on a scale from 1 (very
incorrect) to 7 (very correct). We find no meaningful difference
between the ground truth stimuli and DALL-E generated glass
spheres. This suggests that DALL-E is capable of generating
plausibly correct reconstructions. The KS test reports a signif-
icant difference between the two groups (0.11, p = 0.002) but
with a low Jensen-Shannon divergence of 0.056.

Experiment 4: Shadow Finally, participants rated real-
world (mean = 5.1) and generated (mean = 4.7) object shad-
ows on a scale from 1 (very incorrect) to 7 (very correct).
The KS test reveals no significant difference between ratings
of ground truth and generated shadows (0.088, p = 0.26,
Jensen-Shannon divergence = 0.052), suggesting DALL-E is
adept at reconstructing shadows from scene illumination.

Discussion
We find that on average, human observers cannot distinguish
between unstable vs. stable and heavy vs light DALL-E gen-
erated stimuli, whereas they are able to distinguish real-world
variations along the same physical dimensions. In optics-
based domains (refraction and shadow), however, we find that
human observers do not meaningfully distinguish between
real and DALL-E reconstructed versions of the same stimuli,
suggesting that DALL-E is better equipped to generate plau-
sible physical optics than variations in physical dynamics (sta-
bility and mass). While there is a statistically significant differ-
ence between the stable and unstable generated images, we
hypothesize that this variation is not due to the stability of the
structure itself but rather overt clues around the image (such
as Jenga blocks on the floor, see Figure 2a). The Jensen-
Shannon divergence test and visual inspection of the distribu-
tion plots corroborates this view.

Another potential explanation for convincing generated op-
tics may be that human observers are less able to judge nu-
ances of shadow and refraction (Nightingale et al., 2019; Os-
trovksy et al., 2005). Future work will use sophisticated ob-
servers to discern which aspects of genuine optics appear
DALL-E’s creations. We can conclude that at the level of intu-
itive physics perceived by humans, there is a clear dichotomy
between DALL-E’s inability to generate plausible physical dy-
namics and its capacity to generate plausible optics.
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