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Abstract

A choice to stay committed to a temporally-extended goal
or to switch away from it entails weighing of retrospec-
tive value — how much has been accomplished so far
— against prospective value — how much further till the
finish line. In a novel task where an option needs to be
persistently executed till a set target to earn rewards, we
demonstrate an undue bias in favor of retrospective value
in human behavior resulting in sub-optimal performance.
We further propose computational hypotheses embedded
in framework of reinforcement learning to account for hu-
man performance in the task.

Keywords: reinforcement learning; goal-directed decision-
making; prospective planning

Introduction

The conditions halfway through your PhD might be different
from when you started. A lot of things could go differently
than your expectations. Amidst shifting contingencies, do you
decide to stay on the current goal or decide to drop out?

We encounter many such scenarios where a goal needs to
be set for a temporally extended course of time. It seems to be
the case that people often stick with an option longer than it is
viable for them, a phenomenon documented as a retrospec-
tive cost or sunk cost in decision-making (Arkes & Blumer,
1985), (Arkes & Ayton, 1999). On the other hand, contemplat-
ing the prospective cost — future costs and benefits of further
investment — is considered a rational approach.

How do humans weigh contributions from retrospective
and prospective value computations to guide selection and
switching of temporally extended goals? The rich framework
for temporal abstractions in reinforcement learning can offer
tremendous insights into the computational mechanisms guid-
ing decision-making over extended courses of actions (Sutton
& Barto, 2016), (Sutton, Precup, & Singh, 1999).

We now introduce a novel task where an option or goal
needs to be executed through extended courses of actions
to reach a target and earn rewards. Subjects were allowed
to switch between different goals with no partial or intermit-
tent rewards. We formulate several computational strategies
to solve the task and study how they can potentially account
for human behavior.

Experiment

Suit collection paradigm The objective of the task is to col-
lect suits of tokens (7 tokens of the same kind constitutes a
suit). There are three different tokens in the task — CAT, HAT,
CAR — each endowed with 7 empty slots to collect the tokens.
When one collects 7 of the same kind, points are awarded.

Subjects can collect tokens by flipping appropriate cards.
There are 6 cards in the game (2 cards for each of the 3 to-
kens). We chose the card images to be semantically related
to the tokens to ensure strong CARD–TOKEN (action–goal)
associations.

(a) Subject sees the current slot configuration

(b) Subject can choose to
flip one of the three cards.

(c) Subject sees the updated slot configuration

Figure 1: Suits task: a sample round

In every round of the task (Fig 1), subjects can choose
amongst 3 different cards to collect tokens and fill desired
slots. Every third round we explicitly probed the subjects of
their current goal. Once subjects completed a suit, points
are awarded and slots for the token were refreshed. Subjects
were awarded a bonus that is commensurate to the total num-
ber of suits collected.

Subjects participated in 540 rounds which are grouped into
18 blocks. Each block is one of three types: 80-20, 70-30, 60-
40. For instance, in the 80-20 condition one token is received
with 80% chance upon flipping its cards and the other two are
available with 20%. The most abundant token switches across
adjacent blocks. Subjects were explicitly made aware of the
token probabilities in a block, though they were not told exactly
which token has the highest chance.

Modeling
Models of temporally extended goal-setting entail valuation
of different goals admist shifting contingencies and formula-
tion of policies to guide action selection and adaptive goal-
switching to accrue rewards in the game.

The goals in the task are C, H, R: CAR, HAT, CAR. State
space of the markov decision process is the slot configuration.
Value of choosing goal G at time t is denoted by QG(SG

t ).

TD Agent The first model avoids explicitly encoding the to-
ken probabilities, instead reactively performs the task. Goal
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values are updated by temporal difference (TD) learning rule.
Value is formulated as a function approximator of the state
space.

QG(SG
t = g) = wG

t gα +bG
t

where g is the number of tokens of the goal G collected and α

is the non-linearity in valuation of the token count.

δ = γQG(SG
t )−QG(SG

t−1)

wG
t = wG

t−1 +αδgα

bG
t = bG

t−1 +αδ

The values of goals with greater number of slots filled loom
larger over others up until their parameter values are suffi-
ciently decremented through learning. This model, therefore,
demonstrates retrospective bias.

Prospective This model explicitly encodes the token con-
tingencies and uses it to prospectively estimate the value of
staying committed to a given goal G at every instant. Token
probabilities pG

t are updated at every round by assuming a
beta distribution.

QG(SG
t ) = pG

t γQG(SG
t +1)+(1− pG

t )γQG(SG
t )

Hybrid This model assumes a weighted combination of val-
ues from the above two modes of decision-making (Lee, Shi-
mojo, & O’Doherty, 2014).

QG(SG
t ) = wQG

pros(S
G
t )+(1−w)QG

TD(S
G
t )

Policy for goal selection is a softmax over all goal values.

π(SG
t ,G) = softmaxσ{QC(SC

t ),Q
H(SH

t ),Q
R(SR

t )}

Counting As a baseline, we included a purely retrospective
model which values different goals solely based on the num-
ber of tokens of the kind already collected.

Results
N = 30 subjects recruited through Prolific for the task (median
time – 35 min; base pay – 10.50$/ hour; bonus – upto 2$). All
model simulations are run over 30 random seeds.

Human performance shows influences of prospective and
retrospective value computations There is a natural gra-
dation in task performance from the three models (prospec-
tive, TD, counting). Prospective model provides overall best
performance largely powered by outcomes in the 80-20, 70-
30 contingencies where prospective valuation of tokens has
the highest benefit (Fig 2a, 2b). Human behavior falling short
of the prospective model in the said contingencies indicates
influences of higher retrospective valuation.

Retrospective bias in goal selection is evident in human
behavior Human task performance takes a hit when tokens
with higher number of slots filled (high retrospective value) but

(a) Performance per token con-
tingency. Prospective model out-
performs in 80-20 and 70-30
contingencies.

(b) Density histogram of total
number of suits collected. Be-
havior shows a spread indicative
of a mixture of strategies.

Figure 2: Performance in the task

(a) Probability of choosing the to-
ken with the maximum number
of slots filled (high retrospective
value) but not the most available
one (low prospective value).

(b) Probability of choosing the
token with maximum availability
in the contingency. Prospective
model leveraging token contin-
gencies chooses optimally.

Figure 3: Evidence of retrospective value bias

lower future availability (low prospective value) are chosen as
goals. Choice data analyzed from subjects indicates that this
is the case (Fig 3a). Overall, probability of humans choosing
the token with maximum availability in a contingency as the
goal falls short of the prospective model (Fig 3b).

Weight on prospective value correlates with task perfor-
mance Hybrid model accounts for human choices better
than pure prospective model or pure TD model: 20/30 pre-
fer hybrid over prospective only, 23/30 over TD only (loglike-
lihood ratio test at p < 0.05). Fitted weight on prospective
value in the hybrid model correlates with task performance
(R = 0.68, p < 0.0001).

Figure 4: Prospective value weight on task performance
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