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Abstract: 

Despite having a brain with less than a million neurons, 
honey bees demonstrate higher-order cognitive 
functions, being able to solve non-elemental forms of 
learning and abstract tasks. Experimental studies 
showed that honey bees successfully perform trace and 
delay conditioning tasks, associating a conditioning 
stimulus (CS) with an unconditioned stimulus (US). In 
humans, trace conditioning requires higher-order 
functions such as attention and memory, and it has been 
even suggested to relate to conscious perception. Here, 
taking inspiration from the honey bee's neurobiology, we 
investigated the cognitive architectural ingredients 
necessary to perform trace conditioning tasks. 
Specifically, we modeled a population of 560 Kenyon 
cells in the honey bees' mushroom bodies (MB), a 
structure involved in associative learning and memory. 
We demonstrated that MB neurons learn to associate an 
olfactory CS with a sucrose US via spike-time-dependent 
plasticity (STDP). Additionally, we modeled an 
attentional mechanism that allows disregarding 
distractors stimuli, in line with recent experimental 
findings. Our results matched the experimental 
observations on olfactory trace conditioning in honey 
bee, corroborating our approach. Overall, our results 
give new insights into the neural mechanisms involved 
in trace conditioning, providing a computational 
benchmark to test future predictions and unveil the 
mechanisms of these miniature cognitive architectures. 
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Introduction 

Insects' behaviors and neurobiology can provide 
valuable insights into diverse cognitive processes and 
their neural mechanisms. For example, several 
experimental studies showed that honey bees solve 
complex tasks, such as judging whether two items are 
the same (Giurfa et al., 2001), and simple mathematical 
operations, including the concept of zero, addition, and 
subtraction (Giurfa, 2019). Therefore, investigating and 
modeling honey bees' cognitive architecture can prove 
a powerful tool for understanding higher-order cognitive 
functions. In this work, we consider two types of 
Pavlovian learning: trace and delay conditioning. In 
both tasks, honey bees learn the association between 
a conditioned stimulus (CS, e.g., an odor) and the 
unconditioned stimulus (US, e.g., a sucrose reward), 
but while in delay conditioning the two stimuli overlap, 
in trace conditioning these are separated by a gap of 
several seconds (figure 1A). Interestingly, trace 
conditioning in humans has been related to conscious 
perception and attention, proving that such tasks 
involve non-trivial cognitive functions to be successfully 
learned (Droege et al., 2021). Here, we implement a 
computational model to test whether an architecture 
inspired by the honey bee brain can perform such a 
task. Specifically, we test the hypothesis that the 
mushroom bodies (MB), a multimodal structure 

involved in learning and memory, play a crucial role in 
learning such association. As shown in figure 1B, the 
MB's Kenyon cells (KC) receive the olfactory 
information from the projection neurons (PN) for the CS. 
Information on a possible distractor from the same 
modality may also be conveyed via PNs while 
information on distractors from different sensory 
modalities may be conveyed by other neural tracts 
reaching the MBs. Via spike-time-dependent-plasticity 
(STDP), Kenyon cells associate the olfactory CS to the 
appropriate motor response (i.e., the Proboscis Reflex 
Extension to get the sucrose reward), here represented 
by the extrinsic output neuron (EN). Our results show 
that such honey bee-inspired architecture can learn 
both the delay and trace conditioning tasks, also in the 
presence of the distractor, matching our experimental 
data with real bees. In addition, we demonstrate the 
importance of the serotonergic system, enacted by the 
dorsal paired medial neurons (DPM) discovered in 
fruitflies, which act as a sort of attentional mechanism, 
driving the learning of relevant stimuli, by maintaining 
their neural trace during the gap, while ignoring the 
distracting ones (Zeng et al., 2023). 

Methods 

Our architecture and computational simulations. 
The model's architecture is shown in figure 1, inspired 
by Wessnitzer et al. (2012). The network is composed 
of two layers: 78 projection neurons (PN) constitute the 
first layer, which receives input from sensory receptors 
(not modeled here) and directs it into 560 Kenyon cells 
(KC). These KC cells compose the mushroom bodies 
and eventually project into a single motor neuron (EN),  
involved in the control of the Proboscis Extension 
Reflex (PER), i.e., the response to the sucrose solution.  

 
Figure 1: A) Delay and trace conditioning learning 

scheme, with CS, US, and distractor (DIS). B) Graphic 
representation of our architecture. See text for details 

and abbreviations. 
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Each neuron is modeled by the biologically plausible 
dynamics proposed by Izhikevich et al. (2004). 
Specifically, the membrane potential 𝑣 is modeled as : 

𝐶𝑣̇ = 𝑘(𝑣 −  𝑣𝑟)(𝑣 − 𝑣𝑡) − 𝑢 + 𝐼  
Where u represents the recovery current: 

𝑢̇ = 𝑎(𝑏(𝑣 −  𝑣𝑟) − 𝑢) 
If the membrane potential reaches the threshold 𝑣𝑡, 

both the current and the membrane potential are set to: 
𝑣 = 𝑐 and 𝑢 = 𝑢 + 𝑑. 

Importantly, 𝑎, 𝑏, 𝑐, 𝑑, and 𝑘 are model parameters 
determining the neurons' dynamics and firing rate. We 
set the neurons' parameters to model the firing rate of 
honey bee KCs (Wüstenberg et al., 2004). Specifically, 
we set   𝑎 = 0.01, 𝑏 = −0.3, 𝑐 = −65, 𝑑 = 8,  𝑘 = 0.015,
𝐶 = 4, 𝑣𝑡 = −25  and 𝑣𝑟 = −85. The learning occurs via 
STDP mechanisms, as described in (Izhikevich, 2007), 
mimicking the learning via octopaminergic 
neuromodulators (octopamine in honey bees is the 
equivalent of dopamine in flies). In short, the synapses 
𝑤 between pre-and post-neuron are modulated by the 

octopaminergic concentration 𝑑 and an eligibility trace: 

𝑠̇ = 𝑐 ∗ 𝑑 
where the eligibility trace 𝑐 is defined as:  

𝑐̇ = − 
𝑐

𝜏𝑐

+ 𝑆𝑇𝐷𝑃(𝜏)𝛿(𝑡 − 𝑡𝑝𝑟𝑒/𝑝𝑜𝑠𝑡) 

Intuitively, the eligibility trace is a memory signal that 
decay over time with time-constant 𝜏𝑐 . Lastly, we 
included the effect of the serotonergic DPM neurons, 
which modify each Kenyon cell's eligibility trace decay 
(i.e., 𝜏𝑐), acting as an attentional system. We trained the 
model for 12 trials, each composed of 1000-time steps 
(each representing a millisecond). In each trial, after 
100ms, a CS was presented for 500ms. In delay 
conditioning, the US was delivered within the last 
200ms of the CS. In trace conditioning, the US was 
given 200ms after the end of the CS. If the distractor 
was presented, it occurred randomly before the US (in 
trace conditioning, it always happened after the end of 
the CS).  

Experimental results. We trained N=46 and N=56 
honey bees to perform the delay and trace conditioning 
tasks, respectively. Another set of N=46 and N=61 
honey bees were trained to perform the same tasks with 
distractors (visual stimuli) delivered randomly during the 
inter-stimulus interval. The CS was an odor stimulus in 
all experiments, whereas the reward (US) was a 
sucrose solution. Learning was quantified as the % of 
animals responding to the CS alone during conditioning 
trials (%PER on the y-axis of figure 2A). 

Results 

Figure 2A reveals that honey bees learn the CS-US 
association in the delay conditioning within a few trials, 
irrespective of the distractor's presence. However, 
%PER dropped in trace conditioning and even more in 
the presence of a distractor. As shown in figure 2B, our 
simulations replicate empirical observations. After 

exposing the model to the stimuli in each condition 
(delay/trace, with/without distractors), we tested the 
activation of the motor neurons when giving only the CS 
or the distractor. Our results show that the model 
successfully learns the CS-US association in the delay 
conditioning but less so in the trace one, matching the 
experimental data. In addition, as in the real data, the 
effect of the distractor becomes more significant in trace 
conditioning. We next performed a ‘lesion study’ by 
removing the attentional mechanisms implemented by 
the DPM neurons. Interestingly, in this case, the model 
learns to associate not only the CS to the US but also 
the distractor, as shown in the rightmost column of 
figure 2. We propose in the discussion a possible 
interpretation of this result. 

 
Figure 2: A) average and 95% CI of experimental 

data. B) Results of the simulations. In each condition, 
we trained a distinct model ex-novo. 

Discussion 

In spite of their relatively small brains, honey bees 
show remarkable skills in solving complex tasks and 
learning, becoming an essential inspiration for bio-
inspired autonomous robots and control algorithms. 
Here, we implemented a simplified architecture of the 
honey bee mushroom bodies to investigate the 
occurrence of delay and trace learning. Overall, our 
simulations matched the experimental data in real 
honey bees, thus corroborating our modeling efforts. 
Interestingly, our simulations shed new light on the role 
of the DPM neurons and provided a novel interpretation 
based on attentional control of trace conditioning: how 
does the honey bee manage to learn the appropriate 
trace CS while ignoring the distractor? We suggest that 
the DPM serotonergic system acts as an attentional 
mechanism, enabling the honey bee to focus on 
ecologically relevant stimuli while ignoring distracting 
ones. This interpretation aligns with the experimental 
evidence provided by Zeng et al. (2023), where genetic 
manipulation of the DPM neurons revealed their 
inhibitory role in modulating the KC time window 
involved in associative learning. Future experimental 
studies will be required to confirm such new 
interpretations. All in all, our study reveals the key 
ingredients to learning a complex task, such as trace 
conditioning, and it sheds some light on the cognitive 
architectures of these remarkable, miniature brains. 
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