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Abstract 

Contour integration is the process of linking local 
edge elements to arrive at a unified perceptual 
representation of a complete contour, and may thus 
serve as a critical pre-cursor representation needed 
to extract global shape information supporting 
object recognition. Many mechanisms have been 
proposed for such a feature-linking process (Field, 
Hayes & Hess, 1993; Kellman & Shipley, 1991), 
including long-range lateral interactions (Bosking 
et al., 1997), temporally synchronized cortical 
oscillations (Engel, Konig & Singer, 1991), and top-
down feedback connections (Kim et al., 2019). In 
this study, we test the alternative possibility that 
feed-forward, nonlinear convolutional neural 
networks are able to perform contour integration 
without lateral connections, recurrence, or top-
down feedback. We find that such a feedforward 
system exhibits sensitivities to global and local 
contour curvatures comparable to humans, but it 
requires two critical inductive biases to do so - 
visual experience of relatively straight-looking 
smooth contours and an architectural constraint of 
increasing receptive field size. Through this 
approach, we provide computational support for 
the hypothesis that a hierarchical feedforward 
visual processor can develop and leverage Gestalt-
like laws of "good continuation" to detect extended 
contours in a manner consistent with human 
perception.  
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Methods and Results 
The primary question of this work is whether 
feedforward architectures can show human-like 
sensitivities to contour integration.  
 

Behavioral Experiment 
To first address this question, we conducted a 
behavioral study with human participants using a 
similar experimental setup as Field et al. (1993). We 
recruited 46 participants via Prolific and presented 
them with a subset of 1000 synthetic images of gabor 
elements (see Figure 1a). Each image was comprised 
of an array of 256 gabor elements, among which 12 
elements form an extended contour, while the 
remaining 244 elements are positioned randomly 
without any density cue to segregate the contour 
elements from the background. The curviness of the 
path of the hidden contour was parametrically 

controlled to vary between 15 and 75 degrees. An 
example image with 15 degrees of curvature is shown 
in Figure 1A.  

In the behavioral experiment, each trial consisted of 
two images, one containing a contour and the other a 
tightly controlled version with identical contour and 
background elements but with randomized orientation 
of the contour elements. The two images were 
presented for one second each with a 500ms gap, and 
the participants were asked to identify which of the two 
images contained a contour.  

The results of this behavioral study are shown in 
Figure 1B (blue line), which show a systematic fall off 
in detecting contours as the degree of path curvature 
increases.  

 
Model Experiments 

We next investigated whether a standard Alexnet 
model pretrained for object recognition had the 
capacity to detect these contours (Krizhevsky, 
Sutskever & Hinton, 2017). This model is purely 
feedforward, and thus lacks all the previously 
hypothesized mechanisms underlying the perceptual 
representation of curvatures. We reasoned that this 
model would fail to detect the presence of extended 
contours in these displays, providing an important 
baseline architecture over which further mechanistic 
connections could be added.   

To establish this baseline, we attached a linear read-
out head at the final stage of the model, and fine-tuned 
the model end-to-end while training the read-out head 
on a contour present/absent task.  The model was 
trained on 5000 images and validated on a dataset of 
600 images, both containing contours sampled from a 
broad range of curvatures angles.  

 However, we found that the fine-tuned models could 
accurately detect all curvatures--even the curviest 
contours, where human perceptual capacities were 
unable (Figure 1B- gray line). We use guided 
backpropagation (Springenberg et al., 2014; Figure 
1C) to verify that the model is using the contour 
elements itself to accurately detect the contour, rather 
than a short cut. Thus, contrary to our assumptions, 
purely feed forward convolutional architectures are in 
fact architecturally capable of “path integration” as 
operationalized by this task.  
 

Inductive Bias: Receptive Field Size 
We reasoned that the later stages of the model, which 
have larger receptive fields encompassing increasingly 
more of the full display, must be capable of detecting 
these contours and supporting the contour detection 
capacity.  To test this, we conducted the same read-out 
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and fine-tuning analyses across different layers. 
Indeed, contour detection accuracy increased with 
model depth, peaking around the final convolutional 
layer.  Further, we additionally tested bag-net models 
(Brendel & Bethge, 2019) which do not show 
hierarchically increasing receptive field properties, and 
these models were unable to detect the contours 
across all training regimes we tested. Thus, these 
results demonstrate that later representational stages 
of these convolutional feed-forward models are 
capable of capturing long-range contour information, 
through units with larger receptive field sizes.  
 

Inductive Bias: Trained Orientation 
Given the models were actually too good at detecting 
paths with extreme curvature, we next examined 
whether visual training on a narrower range of 
curvature values would lead to a more human-like 
degradation of contour detection.  We focused on 
models fine-tuned from the avg-pool layer of Alexnet, 
based on the first set of results. We then conducted a 
series of parametric experiments to train models on a 
variety of different curvature ranges, probing their 
generalization curves across the full range of 
curvatures.   

We found that when models are trained on relatively 
straight smooth contours, with a peak at 18 degrees, 
they show a gradual fall-off with curvature similar to 
human participants (Figure 1B – green line) 

We quantified this more rigorously by developing a 
trial-level correlation measure based on a signal 
detection framework.  For the human data, percent 
correct on each trial of the 2-AFC task can be taken as 
a direct measure of the trial-level contour signal 
strength. For the models, which are noiseless, we 
directly used the distance from the decision boundary 
as a measure of contour signal strength for each trial.   

Across models, we find a peak correlation between 
trial-level accuracy between humans and models of 
0.695 (Figure 1D), for models trained at 18 degrees 
(generalizing across models trained with some jitter 
around this peak). Thus, we find that training contour 
detection in this narrower window of relative straight 
curvatures naturally leads to systematic and human-
like fall-off of contour detection as curvature increases.  

Conclusions 
Traditional frameworks of contour perception focus on 
mechanisms operating on early representational layers 
(e.g. lateral connections of V1), or within local 
recurrence (e.g. V2-V1 coordinated processing). While 
our initial aim was to introduce these mechanisms into 
feed forward deep neural network models, we instead 
discovered computational support for an alternative 
mechanism.  That is, purely feedforward hierarchical 
processing can develop and leverage Gestalt-like laws 
of "good continuation" to detect extended contours in a 
manner consistent with human perception. We link this 
capacity to the role of larger receptive fields. And, 
further, we offer an alternative explanation of human-
like contour detection as one that arises from 
mechanisms aimed at relatively straight (off-meridian) 
contours. Less accurate detection of increasingly curvy 
contours naturally follows. It will be important for future 
work to discover the generality of these claims—e.g. is 
18 degrees somehow a critical curvature level in 
natural image statistics, or is this number more a result 
of the particular configuration of receptive field sizes 
present in the Alexnet hierarchical architecture.  
Broadly, these results raise new empirical avenues to 
explore contour sensitivity in higher level regions and 
support the hypothesis that a narrow edge-detection 
mechanism may provide a simpler but productive 
explanation of a broader range of contour detection 
perceptual abilities.  

 
Figure 1: (A) Example image containing gabor elements, subset of which fall along an extended contour with 15° 

curvature (B) Human and Model (finetuned on narrow and broad curvatures) performance as a function of curvature (C) 
Saliency map to detect contour from the finetuned model (D) Image-level comparison between model signal strength (x-
axis) and human percent correct (y-axis) 
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