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Abstract: 
Flexible behavior requires adjustments of cognitive 
control. While the costs of switching between different 
tasks are well studied, much less is known about the 
costs of adjusting the level of control allocation within a 
given task. Here, we develop a model of cognitive control 
dynamics that assumes adjustment costs arise due to 
the time needed to change control signals, and that these 
costs constrain one’s selection of optimal control 
signals. We empirically test two predictions of the model. 
We show that control adjustment costs depend on the 
time allotted to alter control levels, and that optimal 
control signals are modulated by the expected costs of 
adjusting levels of cognitive control. 
Keywords: cognitive control; control costs; drift 
diffusion model; task-set inertia; switch costs 

Introduction 
Goal-directed behavior requires flexible adjustments 

of stimulus-response mappings (task sets) and the 
cognitive control strategies that guide information 
processing. One of the hallmarks of cognitive control 
are the costs associated with the adjustment of 
information processing (Alport et al., 1994; Monsell, 
2003). So far, these costs have been studied in 
situations where people switch between task sets. It 
remains unclear whether the costs of adjusting 
cognitive control generalize to cases where people 
adjust information processing within a given task. Here, 
we seek to develop and empirically test a computational 
model in which adjustment costs arise from dynamical 
changes in levels of control allocation. We confirm 
predictions of our model in experiments requiring 
switches between performance goals within the same 
task. We show that adjustment costs scale with the time 
available to adjust control (Experiment 1), and that 
people weigh such costs prospectively (based on 
expected frequency of goal switching) when setting 
levels of control (Experiment 2).    

Dynamical Model of Adjustment Costs 
In this study, we consider adjustments in two types of 

control signals: processing efficiency (drift rate: 𝑣𝑣) and 
response caution (threshold: 𝑎𝑎 ). These dimensions 
form a 2D space (Fig. 1A-left) in which optimal control 
signals (𝑣𝑣∗,𝑎𝑎∗) can be identified (Bogacz et al., 2006). 
Optimal control signals (Eq. 1 & 2) maximize reward 
rate (𝑅𝑅𝑅𝑅), by balancing the benefits and costs of control. 
Benefits are determined by the probability of correct and 
incorrect responses (𝐸𝐸𝐸𝐸), weights on these outcomes 
(𝑤𝑤1,𝑤𝑤2 ), and the time needed to make a response 
(decision time: 𝐷𝐷𝐷𝐷, and non-decision time: 𝑡𝑡). Intensity 
cost depends on the drift rate (cf. Leng et al., 2021).  

 

𝑅𝑅𝑅𝑅 =
𝑤𝑤1 × �1 − 𝐸𝐸𝐸𝐸(𝑣𝑣,𝑎𝑎)� − 𝑤𝑤2 × 𝐸𝐸𝐸𝐸(𝑣𝑣, 𝑎𝑎)

(𝐷𝐷𝐷𝐷(𝑣𝑣, 𝑎𝑎) + 𝑡𝑡)
− 𝑣𝑣2 − 𝑒𝑒�𝐶𝐶𝑣𝑣(𝑣𝑣− 𝑣𝑣0)2+ 𝐶𝐶𝑎𝑎(𝑎𝑎− 𝑎𝑎0)2   (1) 

 
𝑣𝑣∗,𝑎𝑎∗ = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑣𝑣,𝑎𝑎[𝑅𝑅𝑅𝑅|𝑣𝑣0,𝑎𝑎0,𝑤𝑤1,𝑤𝑤2, 𝑡𝑡]                                                                 (2) 

 
  We recently showed that frequent changes in levels of 
control allocation (e.g., switching between the goal of 
being fast vs. being accurate) carry a performance cost 
(Grahek et al., 2022). Here we provide a mechanistic 
account of this cost (Eq. 3 & 4, Fig. 1A-middle) by 
casting control dynamics as gradual (𝜏𝜏) and noisy (𝑐𝑐2) 
adjustments from the current state of the control system 
(𝑣𝑣0,𝑎𝑎0), toward the optimal state (𝑣𝑣∗,𝑎𝑎∗):  
 
𝑑𝑑𝑑𝑑 = −𝜏𝜏 × (𝑣𝑣 −  𝑣𝑣∗)𝑑𝑑𝑑𝑑 + 𝛮𝛮(0, 𝑐𝑐2𝑑𝑑𝑑𝑑)                                                                      (3) 
𝑑𝑑𝑑𝑑 = −𝜏𝜏 × (𝑎𝑎 −  𝑎𝑎∗)𝑑𝑑𝑑𝑑 + 𝛮𝛮(0, 𝑐𝑐2𝑑𝑑𝑑𝑑)                                                                      (4) 
 
There are two central assumptions in the model. First, 
changing control levels from the current to desired state 
takes time. Second, the time required to adjust control 
incurs a cost, which serves to regularize changes in 
optimal control levels (exponential term in Eq. 1). Thus, 
the cognitive system optimizes control allocation by 
maximizing reward rate, while minimizing adjustment 
costs. At task onset, the current control state is 
implemented (Fig. 1A-right; Navarro & Fuss, 2009), 
irrespective of whether it amounts to the optimal state.    

The model makes at least two sets of testable 
predictions. First, if suboptimal control states are 
caused by insufficient time to transition between control 
states, control levels will be closer to optimality as the 
time allowed for adjustment increases (Experiment 1; 
Fig. 1B-left). Second, adjustment costs should increase 
with more frequent (within-task) goal switches. Thus, 
optimal control signals should be prospectively adjusted 
based on the expected (cued) frequency of goal 
switches (Experiment 2; Fig. 1B-right). 

Figure 1. Computational model (A), predictions 
tested in two experiments (B), and task design (C).   
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Results 
To manipulate adjustment costs, we had subjects 

perform the Stroop task as their performance goals 
varied, thus requiring them to adjust levels of control. 
The Stroop was performed over fixed time intervals 
during which subjects could complete as many trials as 
they wished (Fig. 1C-left). Before each interval, a cue 
instructed them to be as accurate (Accuracy goal; 
requires higher 𝑣𝑣 and 𝑎𝑎), or as fast as possible (Speed 
goal; requires lower 𝑣𝑣 and 𝑎𝑎 ). Across blocks, goals 
were either fixed (requiring no control adjustment), or 
varying (requiring frequent adjustments; Fig. 1C). To 
measure dynamic adjustments in control, we compared 
control signals (drift rate and threshold) between the 
two performance goals in fixed vs. varying blocks. Drift 
rates and thresholds were estimated with a hierarchical 
Bayesian drift diffusion model (Wiecki et al., 2013).  

Time to Adjust Control 
Our model assumes that control signals are adjusted 

incrementally from the current to the desired state. We 
predict that shorter adjustment windows result in 
suboptimal control signals because the desired state is 
not reached before task onset (Fig. 2A-left). To simulate 
this prediction, we first computed the optimal control 
states for the two performance goals, obtained by 
performing inverse reward-rate optimization on the 
group-level data to identify parameters of Eq. 1 (cf. 
Leng et al., 2021). Adjustments of control states involve 
switching between these optimal states. We could then 
simulate levels of control obtained when control signals 
transition from one state to another was terminated 250 
or 750 timesteps after cue onset. We held constant 
adjustment cost weights for drift and threshold (𝐶𝐶𝑣𝑣 =
0.1, 𝐶𝐶𝑎𝑎 = 1), as well as the dynamics parameters (𝜏𝜏 =
0.6, 𝑑𝑑𝑑𝑑 = 0.005; 𝑐𝑐2 = 0).  

To test this prediction, participants (N=50) performed 
the interval task described above (Fig. 1C-left) with 
varying time between cue and interval onset (SOA=250 
vs. 750ms). Overall, drift rates (b=0.15; 95% CrI [0.06, 
0.24]; pb<0<0.01) and thresholds (b=0.14; 95% CrI [0.08, 
0.19]; pb<0<0.01) were higher in the Accuracy relative to 
Speed condition. The difference in thresholds between 
these goals was larger in fixed relative to varying blocks 
(b=-0.07; 95% CrI [-0.1, -0.03]; pb>0<0.01), evidencing 
adjustment costs. Critically, this difference was lower 
when participants had more time to adjust control (b=-
0.78; 95% CrI [-0.15, -0.01]; pb>0<0.01; Figure B-left). 
For drift rates, we found no interaction between 
performance goal and block type, nor a 3-way 
interaction with SOA (ps>0.3). These results confirm 
our model’s prediction that suboptimal adjustments can 
arise from insufficient time to transition between current 
and optimal levels of control (Fig 2A-left).  

Expectation of Goal Switch Frequency  
Our model postulates that control adjustment is 

regularized by prospective costs when optimizing 
control signals (𝑣𝑣∗,𝑎𝑎∗). To simulate this prediction, we 
implemented the same inverse optimization procedure 
and dynamics parameters as in Experiment 1. We then 
parametrically modulated adjustment cost weights on 
drift and threshold to simulate expected adjustment 
costs (highest when expecting to switch performance 
goal every 2 intervals; lowest when expecting no 
switches). These simulations assumed a relatively long 
SOA (1250ms). Our model predicts that, despite having 
sufficient time to adjust control, people should evaluate 
more frequent switches as incurring higher adjustment 
costs, and make smaller changes in levels of control 
signals on those blocks (Fig 2A-right).   

In Experiment 2 (N=55), participants were explicitly 
instructed how often they would switch performance 
goals in a block (fixed vs. goal switches every 8, 4, or 2 
intervals). As in Experiment 1, we found higher drift 
rates (b=0.25; 95% CrI [0.13, 0.37]; pb<0<0.01) and 
thresholds (b=0.13; 95% CrI [0.09, 0.17]; pb<0<0.01) in 
Accuracy vs. Speed intervals. Critically, the Accuracy-
Speed difference decreased as the number of switches 
within a block increased (Figure 2B-right), for both drift 
rates and thresholds (interaction with the linear effect of 
block type: drift rates: b=-0.20; 95% CrI [-0.43, 0.03]; 
pb>0<0.05; thresholds: b=-0.12; 95% CrI [-0.20, -0.04]; 
pb<0<0.01). This result suggests that control 
optimization weighs expected control adjustment costs, 
as predicted by our model (Fig 2A-right).  

Conclusions 
Both computational analyses and behavioral 

experiments suggest that within-task adjustments of 
cognitive control are subject to costs. Adjustment costs 
are proposed to arise due to the time needed to alter 
control signals, and control adjustments are regularized 
prospectively when allocating control.  

Figure 2. Model simulations (A) and parameter 
estimates with 95% credible intervals (B). 

324



Acknowledgments 
This work was supported by the Training Program for 

Interactionist Cognitive Neuroscience T32-MH115895 
(X.L.), NIMH R01MH124849 (A.S.), and NIMH 
R21MH122863 (A.S.). 

References  
Alport, A., Styles, E. A., & Shulan, H. (1994). Shifting 

Intentional Set: Exploring the Dynamic Control of 
Tasks. In Attention and performance XV: Conscious 
and nonconscious information processing. The MIT 
Press.  

Bogacz, R., Brown, E., Moehlis, J., Holmes, P., & 
Cohen, J. D. (2006). The physics of optimal decision 
making: A formal analysis of models of performance 
in two-alternative forced-choice tasks. Psychological 
Review, 113(4), 700–765.  

Grahek, I., Leng, X., Fahey, M. P., Yee, D., & Shenhav, 
A. (2022). Empirical and Computational Evidence for 
Reconfiguration Costs During Within-Task 
Adjustments in Cognitive Control. Proceedings of 
the Annual Meeting of the Cognitive Science 
Society, 44(44).  

Leng, X., Yee, D., Ritz, H., & Shenhav, A. (2021). 
Dissociable influences of reward and punishment on 
adaptive cognitive control. PLOS Computational 
Biology, 17(12), 
https://doi.org/10.1371/journal.pcbi.1009737 

Monsell, S. (2003). Task switching. Trends in Cognitive 
Sciences, 7(3), 134–140.  

Musslick, S., Bizyaeva, A., Agaron, S., Leonard, N., & 
Cohen, J. D. (2019). Stability-Flexibility Dilemma in 
Cognitive Control: A Dynamical System Perspective. 
Proceedings of the 41st Annual Meeting of the 
Cognitive Science Society.  

Navarro, D. J., & Fuss, I. G. (2009). Fast and accurate 
calculations for first-passage times in Wiener 
diffusion models. Journal of Mathematical 
Psychology, 53(4), 222–230.  

Wiecki, T., Sofer, I., & Frank, M. (2013). HDDM: 
Hierarchical Bayesian estimation of the Drift-
Diffusion Model in Python. Frontiers in 
Neuroinformatics, 7.  

 
 

325


