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Abstract 

Recent studies suggest that brain oscillations are 
traveling waves in cortex. Yet, studying oscillations 
propagating within single cortical areas has so far been 
restricted by the need for invasive measurements. Non-
invasive techniques such as MEG or EEG are limited by 
technical and biophysical constraints (e.g., source 
summation, volume conduction, low signal-to-noise 
ratios).  To overcome these issues, we developed a novel 
model-based neuroimaging approach. (1) The putative 
neural sources of a propagating oscillation were 
modeled within the primary visual region (V1) via 
retinotopic mapping from functional MRI recordings 
(encoding model); and (2) the modeled sources were 
projected onto the M-EEG sensor space to predict the 
resulting signal (forward biophysical head model). We 
tested our model by comparing its predictions against 
the M-EEG signal obtained when participants viewed 
visual stimuli designed to elicit either fovea-to-periphery 
or periphery-to-fovea traveling waves, or standing waves 
in V1. Correlations on pairwise sensor relationships 
between predicted and measured data revealed good 
model performance. Crucially, the model was able to 
distinguish M-EEG recordings while participants viewed 
traveling stimuli in one direction compared to the 
opposite direction. Our model aims at recovering the 
spatio-temporal dynamics of cerebral activity from non-
invasive measurements to better apprehend the 
neurophysiological bases of cognition.  

Keywords: cortical oscillations; traveling waves; M-EEG; 
forward model; encoding model; model-based neuroimaging 

Brain activity is typically studied by reducing its 
dimensionality along either the spatial (e.g., spatial 
networks from fMRI) or the temporal dimension (e.g., 
cortical oscillations in specific brain areas or sensors). 
The need for an integrated view of brain functioning 
across time and space was advocated to understand 
the multiscale basis of cognition (Kopell et al., 2014; 
Bassett & Sporns, 2017). One step to achieve such a 
goal is to consider brain oscillations as propagating 
across the cortex (Muller et al., 2018). Yet, the detection 
of traveling waves propagating locally, i.e., within a 
single brain area, was only studied using invasive 
techniques (V1: Chemla et al., 2019; V4: Zanos et al., 
2015; M1: Takahashi et al., 2015) or indirectly via 
behavioral measures (Sokoliuk & VanRullen, 2016; 
Fakche & Dugué, 2022). Strong technical constraints 
limit the use of non-invasive techniques such as MEG 
or EEG to detect traveling waves in the human brain. 
We propose a new model-based neuroimaging 
approach circumventing these issues. 

The classic approach in M-EEG consists in inferring 
source activity (typically, cerebral cortex) from sensor 
data. This inverse problem is mathematically ill-posed 
because there are many more possible sources than 
sensors. Our approach differs by employing an 
encoding model (Kupers, Benson, Winawer, 2021). 
Specifically, the model has two steps: stimulus to 
sources and then sources to sensors. The stimulus-to-

source prediction is a traveling wave in V1, constrained 
by spatial and temporal properties of the stimulus, in 
combination with fMRI-derived retinotopic maps. The 
source-to-sensor prediction is derived from a 
biophysical head model. Measured data are then 
compared to these predicted sensor data to 
characterize the cortical dynamics. 

The long-term goal of the model is to use it to infer 
whether stimuli that do not contain traveling waves 
nonetheless induce traveling waves in cortex. Here, to 
validate the model, we presented dynamic visual stimuli 
to participants while simultaneously recording MEG and 
EEG. The stimuli were designed to induce either 
standing or traveling waves in retinotopic area V1. We 
expected to identify the induced patterns using our 
modeling method. 

Material & Methods 

M-EEG and MRI data acquisition. 28 participants took 
part to the study, approved by the Ethics Committee on 
Human Research (# 2017-A02787-46). All performed a 
first M-EEG session and an MRI session (anatomy and 
retinotopic mapping). 19 performed an additional M-
EEG session. In the first M-EEG session, participants 
fixated a dot at the center of the screen (Fig 1), while 
the luminance of the screen was modulated according 
to equation (1) or (2) (traveling out, from fovea to 
periphery, and standing condition, respectively). A trial 
lasted 2 seconds (160 trials total per condition). 

(1) trav(x,t)=A sin(2πFs.x -2πFt.t+ φ)  +  c) 
(2) stand(x,t)=A sin(2πFs.x).cos(2πFt.t+ φ)+c) 
 

with x, the radial distance of a given pixel on the 
screen, after correction for cortical magnification, A 
= 0.5, c = 0.5, Ft = 5 Hz, φ = π/2, Fs = 0.05 
cycles/mm of cortex. 

In the second M-EEG session, we added a static 
carrier to the luminance modulator to increase V1 
responsiveness. The carrier was Gaussian white noise 
with a spatial frequency tuned to V1’s preferred spatial 
frequency (Broderick, Simoncelli, Winawer, 2022). 
Three conditions were tested to elicit standing and 
traveling waves in opposite directions, from fovea to 
periphery and vice versa, in V1 (standing, traveling out 
and traveling in conditions, respectively; Fig 1). 

 
Figure 1. Visual stimuli designed to elicit standing or 
traveling waves (in two opposite directions) in V1. 
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Computational model. The first part simulates brain 
oscillations that propagate in V1. Using the retinotopy-
derived eccentricity map (Benson & Winawer, 2018), 
we mapped the spatio-temporal dynamics of the stimuli 
onto the cortical surface. The second part (forward 
model) estimates the signals produced at the M-EEG 
sensors from simulated V1 activity.  
 
Comparison between predicted and measured data. 
To quantify the model’s predictive power, we compared 
between-sensor phase and amplitude between 
predicted and measured data. To do so, we extracted 
the instantaneous 5Hz-phase and amplitude of the 
evoked time series using time-frequency decomposition 
with Morlet wavelets. For a given pair of sensors, we 
calculated the amplitude ratio and phase difference 
between sensors. We then combined the obtained 
amplitude and phase in a complex number. This was 
done for every pair of sensors, for measured and 
predicted signals independently, which we then 
compared using Pearson correlation. 

Results & Discussion 

To quantify how much the model predicts the measured 
data, we compared the between-sensor relationships 
(phase and amplitude) between predicted and 
measured data for each condition. The correlation 
coefficients calculated per session and sensor type 
were statistically significant for most participants (MEG 
magnetometers, MAG: 26/28 in session 1, 17/19 in 
session 2, Fig 2A; EEG: 22/28 in session 1, 17/19 in 
session 2, Fig 2B; MEG gradiometers, GRAD: 22/28 in 
session 1, 17/19 in session 2), suggesting that the 
model does capture part of the between-sensor 
relationships in measured data. 

Next, to test the specificity of the model, we compared 
the measured data from the traveling condition to the 
predicted data of the standing condition, and vice versa. 
We expected that the matched comparison (i.e., 
standing model to standing data and traveling model to 
traveling data) explains more variance than the crossed 
comparison (standing model to traveling data and 
traveling model to standing data). We found 3 key 
results: 

(1) Adding the static carrier to the stimulus 
boosted the model performance. We ran a linear 
mixed model on the correlation coefficients with 
sessions, comparison (matched/crossed), measured 
data (traveling/standing) and sensor type (MAG, 
GRAD, EEG) as predictors, and participants as random 
effect. We found a main effect of session (F = 5.82, p = 
0.027) and sensor type (F = 6.38, p = 0.004), indicating 
that the correlation coefficients were stronger in session 
2 (Fig 1A) and in MAG compared to GRAD (post-hoc t-
test, t(18) = 5.06, p = 8.1e-5; other tests: n.s.). A post-
hoc analysis showed that adding the static carrier 

boosted the model performance by increasing the 
strength of the neural signal (data not shown). 

 

 

Figure 2: Correlation coefficients on between-sensor 
relationships between measured and predicted data. 
Correlation for both traveling and standing conditions, 
for each session and channel type (A: MAG, B: EEG). 
To test the model specificity, both predicted data from 
traveling out and in models (red and blue outlines, 
resp.) are compared to the measures from the matching 
condition (red and blue for traveling out and in, resp.; 
session 1: C; session 2: D). Black dots: participants. 
Error bar: standard error of the mean. 

(2) The traveling model better explained both the 
traveling and standing measured data. Specifically, 
we found no effect of comparison (F = 3.588, p = 0.074), 
but a significant interaction between comparison and 
measured data (F = 40.59, p = 5.32e-6). A post-hoc 
hypothesis is that the default response of the visual 
system to any –traveling or standing– stimulus involves 
traveling waves.  

(3) The model was specific to the traveling wave 
direction. Specifically, we compared the two stimuli 
traveling in opposite directions (out vs. in). We ran a 
linear mixed model with comparison (matched/ 
crossed), measured data (traveling in/out) and sensor 
type (MAG/GRAD/EEG) as predictors, and participants 
as random effect. There was a main effect of 
comparison (F = 13.07, p = 0.002) and no significant 
interactions. Thus, the correlation coefficients were 
stronger when the tested model matches the measured 
data (Fig 2). There was also a significant effect of 
sensor type (F = 1.34, p = 0.02): correlation coefficients 
were stronger in MAG compared to GRAD (post-hoc t-
test, t(18) = 4.00, p = 0.001; other tests: n.s.). 

In summary, the model is able to accurately 
determine the direction of traveling waves using non-
invasive measures of brain activity. This represents a 
first proof-of-concept of a tool designed to investigate 
the spatio-temporal dynamics of the brain. 
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