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Abstract
Neural responses in human visual cortex exhibit adap-
tation, showing reduced responses to prolonged and to
repeated stimuli. While adaptation has been widely ob-
served across the visual cortex, it is unclear to what ex-
tent adaptation patterns differ systematically across the
visual hierarchy and what neural mechanisms could ac-
count for such differences. Here, we identify two signa-
tures of adaptation in time-varying electrocorticography
(ECoG) responses that differ between lower and higher
visual brain regions. Neural responses in ventral- and
lateral-occipitotemporal cortex decay more slowly during
sustained stimuli and recover more slowly from adapta-
tion compared to responses in V1-V3. Using a previ-
ously proposed model of delayed divisive normalization,
we link these differences in adaptation to slower normal-
ization dynamics in higher visual areas. These findings
suggest that there are systematic differences in neural
adaptation across the visual hierarchy and that history-
dependent normalization dynamics offer an explanation
for these observed differences.

Keywords: temporal adaptation, delayed divisive normal-
ization, electrocorticography, repetition suppression

Introduction
The human brain integrates sensory inputs over time, evident
in transient-decay dynamics for single stimuli and repetition
suppression (RS) for repeated stimuli. Adaptation has been
widely observed across the visual cortex (Grill-Spector, Hen-
son, & Martin, 2006), but it is debated to what extent adap-
tation patterns differ across visual brain areas (e.g. Fritsche,
Lawrence, and De Lange (2020)) and what neural mecha-
nisms may account for it. Recently, a model of delayed di-
visive normalization (DN), adapted from Heeger (1992), has
been shown to predict the level and time course of adapta-
tion in neural responses (Zhou, Benson, Kay, & Winawer,
2019; Groen et al., 2022). The DN model consists of a hand-
ful of canonical neural computations and accounts for adap-
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Figure 1: Experimental design. A. Stimulus categories: bod-
ies, houses, faces, objects, scenes and scrambled. B. Time
courses of the single (left) and repeated (right) stimuli. C.
Electrode positions aggregated across patients. D. Delayed
divisive normalization model.

tation in neural response time courses by applying a history-
dependent normalization. However, prior studies used simple
contrast pattern stimuli which primarily drive responses in low-
level areas, making it difficult to compare adaptation patterns
across visual cortex. Here, we measured neural responses to
naturalistic stimuli at high temporal resolution and spatial pre-
cision from human visual cortex to test whether visual areas
show area-specific adaptation patterns, and if the DN model
can elucidate the underlying neural mechanisms. Neural re-
sponses were collected using electrocorticography (ECoG) for
single or repeated stimuli belonging to different natural im-
age categories (Fig. 1A) with varying temporal conditions.
We then characterized differences in adaptation by quantify-
ing transient-decay dynamics and recovery from adaptation
in early (V1-V3), ventral-occipitotemporal (VOTC) and lateral-
occipitotemporal (LOTC) cortex.

Methods

Experimental procedure

ECoG data was obtained from four epilepsy patients while
they viewed naturalistic images, either as single events vary-
ing in duration (from 17 to 533 ms), or as two 134-ms events
separated by an inter-stimulus interval (ISI) (from 17 to 533
ms) (Fig. 1B). Time-varying broadband signals (50-200 Hz)
were extracted from a total of 73 visual electrodes with reli-
able responses. Electrodes were assigned to either V1-V3 (n
= 12), VOTC (n = 15) or LOTC (n = 46) (Fig. 1C) based on
their anatomical location and a probabilistic retinotopic atlas
applied to each individual patient (Wang, Mruczek, Arcaro,
& Kastner, 2015).

Computational modeling

Per electrode, the broadband time courses were fitted by the
DN model (Fig. 1D). The core idea is that stimulus-driven ac-
tivation is divisively normalized by delayed activation history.
The normalization is simply the low-pass filtered stimulus-
driven activation. First, a linear response, RL, is computed by
convolving a stimulus time course with an impulse response
function:

RL = S∗h1(τ1), where h1(τ1) = te−t/τ1 (1)

where the parameter τ1 is a time constant determining the
time-to-peak of h1. The input drive is obtained by a full-wave
rectification and exponentiation with parameter n of the lin-
ear response, |RL|n. The final step is divisive normalization
of this input drive with a low-pass filtered version of RL (ob-
tained through convolution with an exponential decay func-
tion parameterized by τ2) that is rectified and exponentiated
with the same n. In addition, an exponentiated parameter σ

is added to the denominator, which prevents the denominator
from reaching 0 :

RDN =
|RL|n

σn + |RL ∗h2(τ2)|n
, where h2(τ1) = e−t/τ2 (2)
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Figure 2: Differences in adaptation patterns in ECoG responses across visual cortex. A. Average broadband (top) and DN model
(bottom) bootstrapped (n = 1000) time courses for single stimuli with varying durations. B. Same as A but for repeated stimuli
with varying ISI. C. Summary metrics derived from neural data (circle) and DN model predictions (triangle) for single stimulus
trials. Left: Time to peak. Right: Full-width half-maximum. D. Left: Recovery from adaptation as a function of ISI. Neural data
are represented as points and the line is a fitted logged curve, recovery = a · log(ISI)+ c, where [a,c] are fitted. Right: Degree
of recovery for an ISI of 1 s derived from extrapolating the fitted curve for both the neural and model time courses.

To take into account category-selectivity of neural responses
in higher visual regions, the DN model scales the input (i.e.,
the height of the stimulus time course) separately for each
stimulus category, adding an additional 6 fitted parameters.

Results

Higher visual areas show slower transient-decay
dynamics and slower recovery from adaptation

In all areas, ECoG broadband time courses to single visual
stimuli are characterized by transient-decay dynamics, show-
ing higher transients and more prolonged responses for longer
duration stimuli (Fig. 2A). In addition, all areas exhibit repe-
tition suppression, showing reduced responses to a repeated
stimulus for short ISIs and recovery for longer ISIs (Fig. 2B).
Comparison of these adaptation patterns reveals clear differ-
ences between visual areas: across all single stimuli, VOTC
and LOTC show a slower response rise (reflected in the time
to peak, Fig. 2C, left) and more prolonged activation than V1-
V3 (reflected in the full-width half max, Fig. 2C, right). For
repeated stimuli, VOTC and LOTC show stronger repetition
suppression compared to V1-V3, with the biggest difference
at long ISIs (Fig. 2D). Moreover, these area differences are
accurately recapitulated by the DN model.

Differences in adaptation reflect slower
normalization dynamics in higher visual areas

To explain adaptation differences between areas, we visual-
ized the time courses of two components of the DN model: the
input drive (numerator, Eq. 2) and the normalization pool (de-
nominator, Eq. 2) (Fig. 3). The DN model captures transient-

decay dynamics of single stimuli because the input drive dom-
inates first, resulting in a transient, while the normalization
pool dominates later, resulting in a decay. In higher visual ar-
eas, both the input drive and the normalization pool rise more
slowly, compared to V1-V3 (Fig. 3A). The DN model explains
RS by predicting activation of the normalization pool that con-
tinues to linger after onset of the second stimulus. This nor-
malization activity lingers longer in higher visual areas, leading
to slower recovery from adaptation (Fig. 3B).

input drive normalisationA
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Figure 3: Differences in adaptation patterns reflect normaliza-
tion pool dynamics. A. Left: Model time courses for a single
stimulus for V1-V3, VOTC and LOTC. Right: Input drive (solid)
and normalization pool (dashed) activation plotted separately
over time. B. Same as A for a repeated stimulus trial.

Conclusion
We reveal differences in adaptation patterns in neural re-
sponses across the visual hierarchy and link these to differ-
ences in history-dependent divisive normalization.
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