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Abstract
Humans learn by directly interacting with the environ-
ment, but we also learn indirectly by communicating with
other people—most notably, via language. How do people
combine experience and language to learn? Here, we de-
velop a Bayesian reinforcement learning model that inte-
grates information from interaction with a task and propo-
sitional “hints” about a task. These hints range from
low-level instructions (e.g., “pull the left arm”) to con-
crete assertions about the task (e.g., “the left arm has an
average reward of 35”) to abstract relational statements
(e.g., “two of the arms yield similar rewards”). Using sim-
ple bandit simulations, we show how Bayesian integra-
tion of linguistic hints can be efficiently computed and
how it shapes learning. Although we mainly focus on the
computational-level problem of language/experience in-
tegration, this work provides insights into testable algo-
rithmic accounts of how people reap the benefits of joint
statistical-symbolic learning.

Keywords: reinforcement learning; language; Bayesian infer-
ence; symbols; decision-making

Introduction
Both language and experience are valuable sources of infor-
mation, but they rely on seemingly incommensurable cognitive
processes. On the one hand, language comprehension exem-
plifies higher-level processing—it is rapid, symbolic, and can
incorporate explicit inferences about a speaker’s intentions,
among other factors (Goldberg, 2003; Goodman & Frank,
2016). On the other hand, experiential learning from environ-
mental contingencies seems to lie at the opposite extreme—it
is slow, statistical, and often implicit (Dayan & Niv, 2008; Sut-
ton & Barto, 2018). Yet, people clearly learn from both lan-
guage and experience, and the two can interact (e.g., some-
one can recommend a restaurant we’ve already been to which
alters our valuation of it). Our goal is investigate the computa-
tional principles that make this interaction possible.

Here, we characterize joint learning from language and
experience by combining Bayesian reinforcement learning
(RL) (Chapelle & Li, 2011) with formal semantics (Cresswell,
2006). We start at the computational-level (Marr, 1982) by
describing the general problem of integrating language and
experience. Then, we propose an efficient algorithm for lan-
guage/experience integration and report simulations with RL
agents given linguistic “hints”. In ongoing work, we are ex-
ploring different tasks and algorithmic accounts for testing lan-
guage/experience integration in participants.

Model
Bayesian reinforcement learning
The simplest setting for learning is the stationary multi-armed
bandit (Sutton & Barto, 2018), in which an agent is faced with
a set of arms, each of which returns a reward sampled from a
fixed distribution. Here, we consider N-armed Gaussian ban-
dits with unknown means µ1:N but known variances σ2

1:N . On

each timestep t, the decision-maker selects an arm at and re-
ceives a reward rt ∼ N (µa,σ

2
a). The learning history up to

time t is the full sequence of actions taken and rewards re-
ceived up until that point, ht = (a1,r1,a2,r2, ...,at ,rt).

We model the decision-maker as a Bayesian reinforcement
learning (RL) agent that maintains a posterior distribution over
the parameters of the task conditioned on the learning history:

P(µ1:N | ht) ∝ P0(µ1:N)P(ht | µ1:N)

and selects actions using Thompson sampling (Thompson,
1933; Wilson, Bonawitz, Costa, & Ebitz, 2021).

Formalizing the semantics of task hints
Following related work on formal semantics and Bayesian
models of language (Cresswell, 2006; Goodman & Frank,
2016), we treat the meanings of linguistic hints as functions
over possible parameterizations of a task Θ (here, Θ = RN ,
the space of all N-arm Gaussian bandit configurations). For-
mally, the meaning of a linguistic hint l is a function from task
parameterizations to real numbers extended with negative in-
finity, fl : Θ → R∪{−∞}. In the context of Gaussian bandits,
our use of (extended) real-valued functions allows us to cap-
ture hints that are categorically true or false, like “Arm 1 is
more than 25” (falsehood is represented as −∞; truth as 0),
as well as graded similarity/difference relationships between
parameter values, such as “Arm 1 is similar to arm 2” in a
manner analogous to fuzzy logics used in control engineer-
ing (Zadeh, 1965).

Meaning functions are represented as arithmetic/logical
terms that are evaluated with respect to a particular set of
parameter values µ1:n ∈ Θ (Table 1). Terms adhere to a
formal grammar of arithmetic/logical composition, similar to
those used in models of rule induction (Goodman, Tenen-
baum, Feldman, & Griffiths, 2008), but here, we have hand-
encoded hints to their terms. For example, we encode the hint
“Arm 1 is more than 25” as ln1(µ1 > 25), which includes a
Boolean subterm (µ1 > 25), an indicator function (1(·)), and
the natural log function (ln(·)).

The grammar also allows us to express abstract, quanti-
fied propositions by encoding existential/universal quantifica-
tion as the max /min value over subterms with variables, sim-
ilar to how disjunction/conjunction are encoded in fuzzy log-
ics (Zadeh, 1965). For instance, the hint “One of the arms is
greater than 25” would be encoded as maxi {ln1(µi > 25)}—
this term contains a variable for arms i that allows us to en-
code abstract propositions about the set of arms.

Table 1: Example hint encodings

Linguistic Hint (l) Meaning function ( fl)
“Arm 1 is more than 25” ln1(µ1 > 25)

“Arm 1 is around 40” −|µ1 −40|
“Arm 1 is similar to arm 2” −|µ1 −µ2|

“Arm 3 is the best” ln1(argmaxa µa = 3)
“One of the arms is more than 25” maxa {ln1(µa > 25)}

“Two distinct arms are similar” maxi, j:i ̸= j
{
−|µi −µ j|

}
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Figure 1: Simulated learning with different hints. (a) Bayesian RL agents were trained for 20 trials on a three-armed Gaussian
bandit, µ1 = 40, µ2 = 41, µ3 = 60. For all arms, σa = 10. (b) Learners were trained with different hints that were helpful (blue)
or misleading (red). Hints had different effects on learning relative to an agent given no hint (grey). Plotted are the proportion of
times the optimal action (a3) was selected on each trial. For each hint, 20 agents were trained on 100 runs on the bandit with
matching pseudo-random seeds. Error bands are 95% CI.

Integrating language and experience
Bayesian approaches provide a general framework for inte-
grating information from different sources as posterior infer-
ence. This includes joint learning from language and experi-
ence in a Gaussian bandit. Formally, given a linguistic hint l
with meaning function fl and learning history ht , the posterior
beliefs over mean arm rewards µ1:N is:

P(µ1:N | ht , l) ∝ P0(µ1:N)︸ ︷︷ ︸
Prior

P(ht | µ1:N)︸ ︷︷ ︸
Experience

exp{ fl(µ1:N)}︸ ︷︷ ︸
Hint

. (1)

How can an RL agent efficiently compute or even approxi-
mate Equation 1 at every time t? In general, updating an ar-
bitrary prior with an arbitrary likelihood is intractable, however,
given certain assumptions about the representation of these
components, inference can be made efficient. For example,
Table 2 shows pseudo-code for an algorithm that efficiently in-
tegrates task feedback with a hint to approximate Equation 1.
Conceptually, inference is accomplished in two stages: first, a
generative model that only takes into account the learning his-
tory ht is updated analytically using conjugate priors (Murphy,
2022). Second, K samples are taken from the experience-
only posterior and filtered by calculating the weights accord-
ing to the hint’s meaning function fl (Shachter & Peot, 1990).
The normalized weights then serve as approximations to the
probability of each sample conditioned on the hint.

Using the algorithm sketched out in Table 2, we ran a se-
ries of simulations in which Bayesian RL agents were given
no hint, informative hints, or misleading hints. As shown in
Figure 1, different hints shaped learning in a variety of ways.

Discussion
Here, we have formulated the problem of optimally integrat-
ing linguistic hints and task feedback, demonstrated how in-
tegration can performed efficiently, and investigated how hints
can shape learning in a simple bandit task. This approach

Table 2: Language/experience integration algorithm

Input: Learning history ht , hint function fl , arm prior hyper-
params µ̄, σ̄2, arm variances σ2

1:N , particle count K
Output: Empirical posterior P̂(µ1:N | ht , l)
for a ∈ [N] do //Update model with experience

Na = ∑(at ,rt )∈ht 1(at = a) //times a was pulled
Ra = ∑(at ,rt )∈ht rt1(at = a) //total reward from a

σ̄2′
a =

(
1

σ̄2 +
Na
σ2

a

)−1
//updated variance of µa

µ̄
′
a =

(
µ̄

σ̄2 +
Ra
σ2

a

)
σ̄2′

a //updated mean of µa

end for
for i ∈ [K] do //Filter with hint

µ(i)1:N ∼ N (µ̄1:N , σ̄
2
1:N) //sample arm means

w(i) = fl(µ
(i)
1:N) //calculate weight

end for

P̂(µ(i)1:N | ht , l) ∝ exp{w(i)} //normalize weights

return P̂(µ(i)1:N | ht , l)

complements previous work on how instructions shape human
RL from a neurocomputational perspective (e.g., Doll, Jacobs,
Sanfey, & Frank, 2009). Additionally, our proposed algorithm
provides a starting point for testing different mechanistic theo-
ries of language/experience integration in humans. For exam-
ple, although here we assume that language mainly influences
“filtering”, hints could also shape how people “generate” sam-
ples of task parameters to begin with (e.g., when an experi-
menter instructs participants to view the arms as independent
Gaussians, this induces a particular generative model). Fu-
ture work will investigate the different ways in which symbolic
communication in the form of language interacts with expe-
riential learning by comparing the predictions of these algo-
rithms with human behavior.
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