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Abstract

Modelling the dynamics of interactions in a neuronal en-
semble is an important problem in functional connectivity
research. One popular framework is latent factor models
(LFMs), which have achieved notable success in decod-
ing neuronal population dynamics. However, most LFMs
are specified in discrete time, where the choice of bin size
significantly impacts inference results. In this work, we
present what is, to the best of our knowledge, the first
continuous-time multivariate spike train LFM for study-
ing neuronal interactions and functional connectivity. We
present an efficient parameter inference algorithm for our
biologically justifiable model which (1) scales linearly in
the number of simultaneously recorded neurons and (2)
bypasses time binning and related issues. Simulation
studies show that parameter estimation using the pro-
posed model is highly accurate. Applying our LFM to ex-
perimental data from a classical conditioning study on the
prefrontal cortex in rats, we found that coordinated neu-
ronal activities are affected by (1) the onset of the cue for
reward delivery, and (2) the sub-region within the frontal
cortex (OFC/mPFC). These findings shed new light on our
understanding of cue and outcome value encoding.

Keywords: multivariate point processes; spike trains; latent
factor models; functional connectivity; neural correlation, clas-
sical conditioning

Introduction

An important question in neuroscience research is under-
standing the functional connectivity between neurons in dif-
ferent parts of the brain. Spike trains based on simultane-
ously recorded neurons provide information about population
coding and neuronal interaction. Both model-free and model-
based spike-train analysis tools have been developed to an-
swer this question. While model-free methods (Perkel et al.,
1967; Ventura et al., 2005; Fujisawa et al., 2008; Humphries,
2011; Lopes-dos-Santos et al., 2013) are typically more effi-
cient and convenient to implement, they often fail to uncover
more complex underlying neuronal relationships beyond cor-
relation at the level of observed data. In contrast, latent fac-
tor models (LFMs) are able to discover patterns which model-
free algorithms cannot, thanks to their ability to specify differ-
ent structures in the latent layers. The remarkable success of
spike-train LFMs in predictive tasks (Yu et al., 2008; Gao et al.,
2016; Wu et al., 2017; Pandarinath et al., 2018) and neuronal
clustering (Buesing et al., 2014; Wei et al., 2022) motivates
our work in this paper to study the functional connectivity be-
tween neurons. As all the aforementioned LFMs are specified
in discrete time, they are commonly applied upon binning the
experimental time to obtain spike counts, which are then mod-
elled using, e.g., a Poisson likelihood. However, the bin size
is often chosen arbitrarily— despite this having a significant
impact on parameter estimation (Nelson, 2002; Kass & Ven-
tura, 2006; Ramezan et al., 2014). Although there are Poisson
process models set in continuous time without binning (e.g.,
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Duncker & Sahani, 2018; Williams et al., 2020), these models
cannot be readily applied to the functional connectivity analy-
sis of multiple neurons.

In this work we present a continuous-time multivariate point
process LFM to study neuronal interactions based on simul-
taneously recorded spike trains in a neural population. To the
best of our knowledge, this is the first continuous-time LFM
proposed for the analysis of neural spike trains. In our model,
the activities of a neuronal population are described by cor-
related Wiener processes with resetting. Each of these pro-
cesses is viewed as a proxy of the evolving membrane poten-
tial of a neuron which resets after reaching a threshold. Cru-
cially, we assume that the high-dimensional multivariate latent
process can be summarized by a small number of dynamic
factors. Not only does this factor analysis framework provide
an interpretable low-dimensional representation of neural ac-
tivities, it also serves as a means of dimension reduction for
studying large neuronal populations. Our model generalizes
the limiting case of the multivariate Skellam point process with
resetting of Ramezan et al. (2022). However, by passing to the
Brownian limit, we are able to develop an efficient algorithm
for parameter inference, which both circumvents the choice of
bin size (it can be made so small as to approximate the con-
tinuous time process arbitrarily well) and scales linearly in the
number of neurons in the analysis. The applicability of the
proposed model and inference procedure is demonstrated in
simulated and experimental data analyses.

Model

A graphical summary of the proposed model is presented in
Figure 1. Let Y; = (y14,...,¥q+) € {0,1}7 denote the ob-
served binary spike trains of a population of g neurons at time
t,and X; = (x14,...,%4;) € R? be the unobserved latent dy-
namic processes of the neuronal population. We assume that
the neuronal activities are governed by X;, which are mod-
elled as correlated Wiener processes with resetting. Each
process i is reset to its initial value whenever it crosses some
neuron-specific threshold, and then a spike occurs, i.e., y;; =
1 is observed. We let @ denote the threshold parameters and
the Wiener process drift vector. The threshold-crossing and
resetting processes mimic the spike-generating mechanism
and the refractoriness of the neuron, respectively. We further
assume that the ¢ dynamic processes can be represented as
X; = AF, + €&, where F, = (fi4,...,fa:) are d (d < q) dy-
namic factors, and & = (&1,,...,&,,) are neuron-specific id-
iosyncrasies. The loading matrix A can be interpreted within
the traditional factor analysis framework— that is, it identifies
a small number of factors driving the neuronal dynamic pro-
cesses. ltis also used to model the correlation matrix between
latent neuron processes, i.e., cor(X;) = £ = AA' + ¥, where
W is a diagonal matrix with elements determined by A and the
fact that £ has unit diagonal.

Inference

Model inference is carried out in two steps. First, the drift
of the Wiener process and the threshold parameters, sum-
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Figure 1: lllustration of the proposed model.

marized by 0, can be estimated analytically since the first
passage time of a Wiener process follows an Inverse Gaus-
sian distribution (Brown, 2005). However, closed-form estima-
tion of A is not available. One common solution is to employ
MCMC sampling on p(X;.7,A | Y1.7), where time has been
discretized to an arbitrarily fine grid. However, this can be
prohibitively slow in high dimensions. Instead, the latent pro-
cesses Xj.7 are integrated out via the Laplace approximation
(Tierney & Kadane, 1986; Skaug & Fournier, 2006; Koyama
et al., 201 O), ie., PLA(Yl:T | A) ~ fp(Y];T,X];T ‘ A) dX];T,
so that an estimate of A can be obtained by maximizing
the Laplace-approximated marginal likelihood pra(Yi.7 | A).
An efficient gradient-based nested optimization algorithm for
this is implemented in our R/C++ library fastr (Chen et al,,
2023). The algorithm involves repeatedly solving linear sys-
tems of the form £x = b, which due to the factor structure
L = AA' + ¥, scales linearly in the number of neurons ¢ for
fixed number of factors d.

Data Analysis

To assess the performance of the proposed model, we first
applied it to a biologically plausible simulated dataset gener-
ated in NEURON (Hines & Carnevale, 1997). We found that
the K-means clustering results based on A are far more ac-
curate than those based on (convolved) multiple neuron spike
trains Yi.7 (see Figure 2(a)-(c)). Therefore, the estimate A
uncovers the underlying associations between neurons be-
yond what is observed at the data level. Next, we applied our
model on neuronal ensembles recorded from a rat’s medial
prefrontal cortex (mPFC) and orbitofrontal cortex (OFC) dur-
ing a classical conditioning experiment. The rat was trained to
recognize a cue predictive of an appetitive outcome (sucrose).
We modelled neuronal population dynamics in relation to en-
coding appetitive outcomes and functional connectivity, and
found that coordinated activities are modulated by brain areas
mPFC and OFC. The estimated correlation matrices £ in Fig-
ure 3 also show a decrease in overall neuronal interactions
after the onset of the cue.

Discussion

We have proposed a novel continuous-time multivariate point
process latent factor model for simultaneously recorded spike
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Figure 2: Clustering performance. The (i, j)-th entry of the
matrix is black if neuron i and j are assigned to the same
cluster, and white otherwise.
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Figure 3: Estimated correlation between neurons. "O” stands
for OFC neurons and "M” stands for mPFC neurons. The
numbers are the neuron indices. For visual presentation, non-
significant values and the diagonal elements are set to zero.

trains. Downstream analyses using the proposed model can
reveal neuronal clustering and estimate correlations between
neurons. Computational challenges in model inference are
addressed by carefully designing and implementing an effi-
cient model-fitting procedure based on the Laplace approx-
imation. We have confirmed, via simulation studies, that
our algorithm achieves satisfactory accuracy and precision in
parameter estimation. Finally, compared to black-box deep
learning models for neural spike trains, our proposed model is
able to provide more reliable statistical inference results with
uncertainty quantification, which is vital for making scientifi-
cally sound conclusions. One immediate future direction is to
apply our model to appetitive and aversive classical condition-
ing outcomes (available within the same experimental data) to
investigate reward-value coding, and to identify value signals
for the most relevant contextual features.



Acknowledgments

This work was supported by the Natural Sciences and
Engineering Research Council of Canada, grant num-
bers RGPIN-2018-04376 (Ramezan), DGECR-2018-00349
(Ramezan) and RGPIN-2020-04364 (Lysy).

References

Brown, E. N. (2005). Theory of point processes for neural
systems. In Methods and models in neurophysics (p. 691-
727). Elsevier.

Buesing, L., Machado, T. A., Cunningham, J. P., & Paninski,
L. (2014). Clustered factor analysis of multineuronal spike
data. In Advances in neural information processing systems
(Vol. 27).

Chen, M., Ramezan, R., & Lysy, M. (2023).
fastr: Factor Analysis of Spike Trains in R.
https://github.com/meixichen/fastr. GitHub.

Duncker, L., & Sahani, M. (2018). Temporal alignment and la-
tent Gaussian process factor inference in population spike
trains. In Advances in neural information processing sys-
tems.

Fujisawa, S., Amarasingham, A., Harrison, M. T., & Buzsaki,
G. (2008). Behavior-dependent short-term assembly dy-
namics in the medial prefrontal cortex. Nature Neuro-
science, 11, 823—833.

Gao, Y., Archer, E., Paninski, L., & Cunningham, J. P. (2016).
Linear dynamical neural population models through nonlin-
ear embeddings. In 30th conference on neural information
processing systems.

Hines, M. L., & Carnevale, N. T. (1997). The neuron simulation
environment. Neural Computation, 9, 1179-1209.

Humphries, M. D. (2011). Spike-train communities: Find-
ing groups of similar spike trains. Journal of Neuroscience,
31(6), 2321-2336.

Kass, R. E., & Ventura, V. (2006). Spike count correlation
increases with length of time interval in the presence of trial-
to-trial variation. Neural Computation, 18(11), 2583-2591.

Koyama, S., Eden, U. T., Brown, E., & Kass, R. (2010).
Bayesian decoding of neural spike trains. Annals of the In-
stitute of Statistical Mathematics, 62, 37-59.

Lopes-dos-Santos, V., Ribeiro, S., & Tort, A. B. L. (2013). De-
tecting cell assemblies in large neuronal populations. Jour-
nal of Neuroscience Methods, 220, 149-166.

Nelson, M. E. (2002). Multiscale spike train variability in pri-
mary electrosensory afferents. Journal of Physiology-Paris,
96(5), 507-516.

Pandarinath, C., O’'Shea, D. J., Collins, J., Jézefowicz, R.,
Stavisky, S. D., Kao, J. C., ... Sussillo, D. (2018). Infer-
ring single-trial neural population dynamics using sequen-
tial auto-encoders. Nature Methods, 15(10), 805-815.

Perkel, D. H., Gerstein, G. L., & Moore, G. P. (1967). Neuronal
spike trains and stochastic point processes. ii. simultaneous
spike trains. Biophysical journal, 7(5), 419-40.

&5

Ramezan, R., Chen, M., Lysy, M., & Marriott, P. (2022). A mul-
tivariate point process model for simultaneously recorded
neural spike trains. In Conference on cognitive computa-
tional neuroscience.

Ramezan, R., Marriott, P., & Chenouri, S. (2014). Multiscale
analysis of neural spike trains. Statistics in Medicine, 33,
238-256.

Skaug, H. J., & Fournier, D. A. (2006). Automatic approxima-
tion of the marginal likelihood in non-gaussian hierarchical
models. Computational Statistics & Data Analysis, 51(2),
699-709.

Tierney, L., & Kadane, J. (1986). Accurate approximations for
posterior moments and marginal densities. Journal of the
American Statistical Association, 81, 82-86.

Ventura, V., Cai, C., & Kass, R. E. (2005). Trial-to-trial variabil-
ity and its effect on time-varying dependency between two
neurons. Journal of neurophysiology, 94(4), 2928-2939.

Wei, G., Stevenson, |. H., & Wang, X. (2022). Bayesian
clustering of neural activity with a mixture of dynamic
Poisson factor analyzers. arXiv. Retrieved from
https://arxiv.org/abs/2205.10639

Williams, A. H., Degleris, A., Wang, Y., & Linderman, S. W.
(2020). Point process models for sequence detection in
high-dimensional neural spike trains. In Advances in neural
information processing systems.

Wu, A., Roy, N. A., Keeley, S., & Pillow, J. W. (2017). Gaussian
process based nonlinear latent structure discovery in multi-
variate spike train data. In Advances in neural information
processing systems (Vol. 30).

Yu, B. M., Cunningham, J. P, Santhanam, G., Ryu, S. |,
Shenoy, K. V., & Sahani, M. (2008). Gaussian-process fac-
tor analysis for low-dimensional single-trial analysis of neu-
ral population activity. Journal of Neurophysiology, 102(1),
614-635.



