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Abstract
The dynamic and relational structure of memory has im-
portant implications for human learning, education, and
artificial intelligence. In this work, we propose the Hierar-
chical Ornstein–Uhlenbeck Model (HOUM) to capture the
dynamics of learning and forgetting, with a GrapHOUM
extension leveraging the relational structure of knowl-
edge. This combined approach models the dynamic in-
terplay and structured organization of memory traces in
short-term and long-term memory, predicting future re-
call probability. We demonstrate the effectiveness of our
model by outperforming previous models on their own
datasets. This work provides important insights into hu-
man learning and memory, and lays the foundations for
developing future tools using artificial intelligence to rec-
ommend learning schedules for self-directed learners.

Keywords: Memory and Learning, Spaced Repetition, Con-
nectionism, Stochastic Process, Knowledge Graphs

Introduction
The interconnected nature of learning and memory has long
been a central focus in cognitive psychology and neuro-
science, with important implications for education and artificial
intelligence. A key observation is that the spacing of study
sessions can enhance memory retention (Ebbinghaus, 1885),
inspiring various learning techniques utilizing a spaced repe-
tition schedule (Settles & Meeder, 2016; Walsh, Gluck, Gun-
zelmann, Jastrzembski, & Krusmark, 2018).

However, human learning is also characterized by the re-
lational structure of knowledge (Rumelhart, 2017; Piaget,
1970). Accordingly, a number of recent studies suggest that
memory traces are formed in a structured manner, where
learning one knowledge component can influence others con-
nected to it (Lynn & Bassett, 2020; Karuza, Thompson-Schill,
& Bassett, 2016). Thus, a complete picture of human learn-
ing not only needs to account for the dynamic maintenance
of individual memory traces, but also the structured nature of
knowledge.

Here, we propose a novel Hierarchical Ornstein–Uhlenbeck
Model (HOUM) to describe the dynamic interplay among
memory traces in both short-term and long-term memory. We
also extend this model to account for the structured organiza-
tion of knowledge (GrapHOUM). By combining both dynamics
and structure, our model aims to provide a more comprehen-
sive and accurate representation of human learning and mem-
ory mechanisms, which we intend to deploy as an AI tutor to
support self-directed learning in future work.

Models of Memory and Learning
Cognitive models of learning and memory retention have been
developed to predict the future recall probability of a learner
(Lee & Wagenmakers, 2014) based on past performances.
These models are often based on three key findings: i) the
power law of learning describing increased performance with
repeated practice, ii) the power law of forgetting describing
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Figure 1: Regression Models HLR/PPE vs. Hierarchical Bayesian
Models HOUM/GrapHOUM. Two different knowledge components
are presented in the GrapHOUM panel to illustrate relational inter-
actions. N•

t ,N
◦
t ,N

•◦
t represent the number of recalled, forgotten,

and total interactions up to time t. Vertical dashed lines indicate re-
hearsals.

performance decline as a function of elapsed time, and iii)
the spacing effect showing distributing practice over time en-
hances retention compared to “cramming”.

Two prominent examples are the Half-Life Regression
(HLR; Settles & Meeder, 2016) and Predictive Performance
Equation (PPE; Walsh et al., 2018) models.

For a given knowledge component, such as the midpoint
formula for a segment, HLR predicts the probability of correct
recall mt at time t as a function of the time elapsed since the
last exposure ∆t and the number of previous rehearsals xt :=
(N•

t ,N
◦
t ,N

•◦
t ):

mt = 2−∆t/ht , where ht := 2Θ·xt (1)

where N•
t ,N

◦
t and N•◦

t represent the number of recalled (•),
forgotten (◦), and total (•◦) interactions up to time t. The free
parameter Θ ∈R3 modulates the influence of historical statis-
tics Nt on future performance.

Similarly, PPE uses a learning rate β and a forgetting pa-
rameter α along with an additional parameter a representing
prior knowledge:

mt = (a+N•◦
t )β

∆
−α
t (2)

As shown in Figure 1, both models assume that perfor-
mance on a task improves with experience N•◦

t , but is offset
by forgetting over time ∆t . The specific forms of the dual pro-
cess of learning and forgetting differ between the two models,
but they share the fundamental assumption that both are im-
portant factors when modeling human performance.

Hierarchical Ornstein–Uhlenbeck Model (HOUM). We
propose a Hierarchical Ornstein–Uhlenbeck Model (HOUM)
as a new framework for modeling learning and forgetting un-
der uncertainty, where hierarchical Bayesian inference allows
us to amortize parameter learning across learners. At its core,
HOUM uses an Ornstein-Uhlenbeck (OU) process, a mean-
reverting process common in physics and neuroscience, to
describe dynamics of a memory trace mt :

dmt = α(µ−mt) dt +σdWt , (3)

where α represents the rate of reversion to a long-term base-
line µ, where µ indicates the strength of long-term memory.
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Figure 2: Experimental results. a) F1 score of predictions from HLR,
PPE, HOUM with increasing fractions of training data. b) F1 score
and accuracy of predictions from HLR, PPE, GrapHOUM on 50%
training data. c) Predicted recall probability of knowledge compo-
nents (KCs) from PPE vs. GrapHOUM. Green dots represent ac-
tual learner performance (•/◦: recall/forget); other colors respective
model predictions. Colored triangles ▶,◀ mark presentation times
of KCs.

The OU process also accounts for random fluctuations, where
Wt represents a Wiener process of variance σ. The strength
of a memory trace as a function of time is given by the solution
of Eq. 3, depending only on the parameters Θ := {α,µ,σ}:

mt = e−α∆t mt−1

short-term
memory dynamics

+ µ
(
1− e−α∆t

)
long-term

memory convergence

+σ

∫ t

t−∆t

e−α(t−s) dWs

random fluctuations

(4)

Structured Memory Traces: GrapHOUM. We can extend
the model by accounting for the effect of the structured inter-
dependence of knowledge components on memory. We in-
corporate learning dependencies into the long-term memory
strength via parameters ai j, quantifying how learning knowl-
edge component i empowers the learner to tackle j:

µt := (1−ω) ∑
j ̸=i

ai jm
(i)
t

structure
empowerment

+ω log(N•
t /N•◦

t )

feedback
empowerment

(5)

The dependencies among knowledge components model the
spreading activation of memory traces across the knowledge
graph. An additional term describes the effect of positive feed-
back; the parameter ω quantifies their relative importance.

Results
Experiments. We use learning histories shared publicly by
online educational platforms Duolingo (Settles & Meeder,
2016) and Junyi (Chang, Hsu, & Chen, 2015). The Duolingo
dataset on second-language learning comprises 13,854,226
interactions with 19,279 knowledge components while the
Junyi dataset consists 25,925,992 interactions with 722 math-
ematics knowledge components organized in a knowledge
graph A, where each ai j ∈ A represents the dependency
of knowledge component i on j. At time t, a learner l is
presented with a knowledge component ct , and we observe

their binary performance yt . The interaction histories of each
learner can be represented as H T = (ct ,yt)

T
t=1.

Prediction Performance. In education, it is important to
predict a learner’s future performance based on H T to se-
lect appropriate further teaching material. For PPE and HLR,
we use gradient descent to obtain model parameters. For
HOUM and GrapHOUM, the tractable likelihood of the OU
process p(H t |Θ) allows for hierarchical Bayesian inference
p(Θ|H t) ∝ p(H t |Θ)p(Θ). We use variational inference
for the posterior distribution of the parameters p(Θ|H t).
Conditioned on the inferred parameters, we can then make
predictions about the distribution p(yt+1|Θ) of future perfor-
mance. Figure 2a compares performance across models.
We selected 100 sequential interactions of learners from the
Duolingo dataset, trained on the first 10-50% of the data,
and predicted the rest. HOUM robustly outperformed HLR
and PPE. HOUM’s advantage comes from using hierarchical
Bayesian inference, thus allowing it to better generalize across
learners.

In Figure 2b, we compare GrapHOUM with HLR and PPE
on the structured Junyi dataset (trained on 50% of the data).
By incorporating the connected structure of knowledge com-
ponents, GraphHOUM makes better predictions than HLR and
PPE.

Latent Memory Trace Dynamics. Figure 2c illustrates how
GrapHOUM leverages the structure of knowledge to model the
dynamics of memory, compared against PPE which lacks this
capability. In the example, vertical dashed lines denote times
at which learners are presented with a new knowledge com-
ponent (KC 1, ◀; Fig. 2c). Standard, unstructured regression
models struggle to predict performance on a novel compo-
nent. For instance, in the first presentation of ◀, learners
are studying the midpoint knowledge component after hav-
ing learned about distance. The PPE model predicts a recall
probability of 0 for the new knowledge component because
there is no prior exposure. In contrast, GrapHOUM leverages
the dependence of midpoint on distance, and is able to gen-
eralize recall probability (with uncertainty) based on it.

Conclusion
We present an innovative framework for modeling the dynamic
and structured nature of human learning and memory. In
two experiments on real-world online-learning datasets, our
HOUM and GrapHOUM models outperform previous HLR and
PPE models on their own datasets. Taken together, our results
suggest that leveraging knowledge structure can significantly
enhance the performance and interpretability of memory mod-
els. This framework has the potential to advance our under-
standing of cognitive processes and contribute to the devel-
opment of more effective strategies, tools, and interventions
in educational settings. We intend to extend our scope in fu-
ture work by inferring knowledge graphs in settings where the
ground truth is not known.
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