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Abstract
Meta-cognition, our ability to assess the quality of our own
decisions, is important for regulating choices and has been
extensively studied through assessing and modeling reports
of confidence. However, these studies focus on immediate
choices rather than sequential ones. The latter pose partic-
ular problems for meta-cognitive efficiency assessments, be-
cause the underlying difficulty of decision-making changes as
the problems evolve. Here, we focus on sensitivity and bias of
meta-cognitive judgments in learning/decision-making tasks
in which outcome values must be learned across trials. We
repurposed the central idea underlying the M-ratio, a popular
meta-cognitive assessment measure in perceptual decision-
making. We built a Forward model of confidence, character-
izing the subjects’ choices and generating ‘first order’ con-
fidence from the modelled probability of being correct; and
a Backward model of confidence, which generates choices
whose first-order confidence best matches the subjects’ con-
fidence reports. The performance of Forward and Backward
models play the roles of d’ and meta-d’ in our measure of
meta-cognitive efficiency, MetaRL-Ratio. We found that the
performance of the Backward model was consistent with pre-
vious measures of meta-cognitive sensitivity and the MetaRL-
Ratio differentiated simulated low and high meta-cognitive
competence. This study suggests that MetaRL-Ratio is a
promising tool for assessing meta-cognitive efficiency in the
value-based learning/decision-making.

Keywords: Meta-cognitive efficiency; Forward/Backward
model of confidence; Value-based learning/decision-making

Materials and Methods
Cognitive task. Participants performed an online two-armed
restless bandit task (Sutton et al., 1998). They were told that
the goal of the task was to gain as much money as possible
on virtual slot machines. On each trial, participants had to
choose between two slot machines, presented on their com-
puter screen, one of which had a higher average reward per
choice. They were told that every 18-22 trials a switch would
take place and the other slot machine would now give the
higher reward. After each choice the participants had to in-
dicate how confident they were about their decision on a con-
tinuous scale running from ‘this was a guess’ to ‘very cer-
tain’. After they rated their confidence, a numerical reward
based on their choice appeared on the screen and the next
trial started. In one condition of experiment, the rewards fol-
lowing a worse or better choice were drawn from normal dis-
tributions N (40,8) or N (60,8) respectively (with a single set
of rewards for all participants, but with randomly shuffled or-
ders). The task included 20 blocks of 18-22 trials, for a total of
400 trials.

Computational modelling
Forward model of confidence. We use maximum likelihood
estimation to fit each subject’s empirical choices. The best
account came from an extended Q-learning-based reinforce-
ment learning model (Figure 1, blue) with softmax exploration

and three learning rates, one each for positive and negative
prediction errors for the chosen option, and one more (typi-
cally negative) for the unchosen option, which multiplied the
full prediction error of the chosen option. We evaluated how
much reward the best-fitting forward model would gather on
average when run autonomously on the task using the same
(potential) reward sequences as the participants in the exper-
iment (R̄ f

s for subject s). To model confidence, we scaled the
output of the softmax using parameters Lc and Hc, which rep-
resent the confidence biases for each subject, and were fit
by minimizing the Euclidean distance between the scaled and
empirical confidence (using scipy.optimize.minimize).

Backward model of confidence. For the case of percep-
tual decision-making, the meta-cognitive sensitivity measure
meta−d′ comes from treating the empirical reports of confi-
dence as the result of a probabilistic choice process (as in a
first-order decision-making model), and quantifying the effec-
tive perceptual sensitivity of that model. This can be seen as
going backwards from confidence to choice. We therefore de-
fined a Backward model (figure 1, red) in which we character-
ize subjects’ choices as coming from the same RL process as
the Forward model, but with decision-making parameters fit
to make the (similarly scaled) choice probabilities match the
empirical confidence judgments as best as possible (rather to
match the empirical choices). We then evaluated how much
reward the best-fitting Backward model would gather when run
autonomously on the task (R̄b

s for subject s), as for the Forward
model.

Measure of meta-cognitive efficiency. Inspired by the M-
ratio for perceptual-decision-making, we defined the MetaRL-
Ratio = R̄b

s/R̄ f
s as a measure of meta-cognitive efficiency.

A salient feature of this ratio is that it accounts correctly for
the varying difficulty of the underlying RL problem, generated
here by the unsignalled changes in the qualities of the ban-
dits. Such changes make difficulties in the perceptual case
(Rahnev & Fleming, 2019). Standard meta-cognitive sensitiv-

Figure 1. In the Forward model (blue), we used the choices
made by subjects to determine the choice parameters of our
model. The scaled confidence of model in empirical choices
via confidence bounds parameters, Lc and Hc, was fitted to
the empirical confidence reports. In the Backward model
(red), we determined choice parameters by matching the
optimally-rescaled first-order confidence of the choice model
to the empirical confidence reports.
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Figure 2. A) The performance of the Backward model, R̄b
s was positively correlated with the empirical QSR. B) Histogram of the

MetaRL-Ratio for the empirical data. C) Comparison of empirical performance (green) with those of the Forward (R̄ f
s , blue) and

Backward (R̄b
s , red) models. Thin black lines connect subjects; thick lines connect the means.

ity measures, such as the QSR (Carpenter et al., 2019), do
not admit natural measures of efficiency. We then conducted
various tests, including whether R̄b

s is correlated with QSR;
whether the MetaRL-Ratio is generally less than 1 (a form of
meta-cognitive inefficiency that is often found in the perceptual
case; Maniscalco & Lau, 2012; Fleming, 2017), and whether,
if we simulate artificial meta-cognitively incompetent agents
(’low’; by sampling confidence values at random) and com-
petent agents (’high’; by setting confidence to a large/small
value for choices associated with the better/worse bandit re-
spectively), the MetaRL-Ratio can discriminate appropriately.

Results
Consistency of Backward performance with QSR. Our
measure of meta-cognitive sensitivity, R̄b

s , was positively cor-
related with the Brier score QSR (t(58) = 2.747, r = 0.340,
p = 0.008, 95%CI = [0.093,0.546], Pearson correlation; fig-
ure 2A).
Meta-cognitive inefficiency. The Backward model generally
underperformed the Forward model (Z = 67.0, p = 4.3e−10;
figure 2C), MetaRL-Ratio was lower than 1 for 56 out of 60
subjects (figure 2B). The empirical performance was higher
than Forward performance (Z = 234.0 , p = 2.5e−6) and
also higher than the Backward performance (Z = 4.0, p =
2.931e−11) (all statistics were from Wilcoxon-signed-rank test
between two groups).
Discrimination between high versus low meta-cognitive
agents. By construction, simulated ’low’ and ’high’ meta-
cognitive agents have the same Forward performance R̄ f

s .
The Backward performance R̄b

s was worse than this for the
’low’ agents , mean across 30 sampling for confidence rates,
( Z = 110, p = 3.10e−9), and better for the ’high’ agents (
Z = 185.5, p= 7.85e−8), with the MetaRL-Ratio for the former
duly being lower than for the latter ( Z = 12.0, p = 2.98e−11)
(figure 3).

Conclusion
We report novel measures of meta-cognitive sensitivity and
efficiency for RL problems. The Backward model, which at-

Figure 3. The performance of the Forward model (blue) was
between the performance of the Backward model for sim-
ulated ’low’ (light red) and ’high’ (dark red) meta-cognitive
agents. The Backward performance for low meta-cognitive
agent was lower than the Backward performance for high
meta-cognitive agent.

tempts to simulate the choices implied by subjects’ confi-
dence judgments, was inspired by the meta−d′ in perceptual
decision-making, and is a measure of sensitivity. The MetaRL-
Ratio, inspired by the M-Ratio, corrects for the first-order per-
formance of the subjects. We evaluate both Forward and
Backward model by their reward rates when run autonomously
on the task – this is slightly farther removed from the quality of
the empirical performance of the subjects than the perceptual
equivalent, d′. However, it correctly accommodates the ever-
changing degree of difficulty of the underlying task (as the
bandits switch their relative values in an unsignalled manner).
We showed that R̄b

s covaries with a standard measure of meta-
cognitive sensitivity; and that the MetaRL-Ratio is appropriate
to discriminate between suitably simulated subjects. We also
found that our subjects were generally meta-cognitively inef-
ficient. We will next extend this measure to a broader range
of RL problems, including those in common use for assessing
cognitive disorders.
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