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Abstract: 

Extracting hidden layer activations from deep neural 
networks (DNNs) is an essential step in characterizing 
how they transform their internal representations over 
processing, and in evaluating them as models of brain 
computation. Here we introduce TorchLens, an open-
source Python package for extracting hidden layer 
activations from DNNs implemented in PyTorch. 
Uniquely among existing approaches to this problem, 
TorchLens has the following features: (1) it exhaustively 
extracts the outputs and accompanying metadata of all 
intermediate operations, not just those associated with 
PyTorch module objects, yielding a full record of every 
step in the model's forward pass, (2) it can automatically 
generate an intuitive visualization of the model's 
complete computational graph, (3) it contains a built-in 
validation procedure to algorithmically verify the 
accuracy of all saved activations, and (4) it can be 
applied to arbitrary PyTorch models with no 
modifications, including models with dynamic 
computational graphs (e.g., if-then logic in the forward 
pass), recurrent models, models containing parallel 
branching, and models with internally generated tensors 
(e.g., injections of noise). Furthermore, using TorchLens 
requires minimal additional code, making it easy to 
incorporate into existing pipelines for model 
development and analysis, and useful as a pedagogical 
aid when teaching deep learning concepts. 
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Introduction 

Extracting hidden layer activations from deep neural 
networks (DNNs) is an essential step in understanding 
the series of transformations with which they transform 
their inputs into outputs, and for relating their 
intermediate processing stages to those used by the 
brain. Since it is increasingly common to compare many 
different DNNs based on their task performance and 
correspondence with the brain (Khaligh-Razavi & 
Kriegeskorte, 2014; Xu & Vaziri-Pashkam, 2021; 
Yamins et al., 2014), it is highly desirable to have 
efficient and flexible methods for extracting 

intermediate activations from DNNs. Ideally, such a 
method should work for all PyTorch DNN models (not 
just a subset), should be able to extract the results of 
any desired intermediate operations without limitations, 
should make it easy to understand the placement of 
each layer within the broader network, and given the 
infinite space of possible DNNs, should have built-in 
methods for ensuring the accuracy of saved activations. 
While several PyTorch feature extraction packages 
exist (Marcel & Rodriguez, 2010; Muttenthaler & 
Hebart, 2021; Schneider, 2022), none meet all of these 
criteria: for instance, some only work for models with 
static computational graphs but not for models with 
dynamic graphs (e.g., from conditional if-then branching 
in the model’s forward pass, or recurrent models with 
varying numbers of loops), and others can extract the 
results of PyTorch module objects, but not from tensor 
operations that are not linked to a module.  

Here, we introduce a new Python package, TorchLens, 
that meets these criteria: it works for arbitrary PyTorch 
models, can extract the results of any desired tensor 
operation in a model, and can automatically visualize 
the structure of a network, aiding in layer selection and 
understanding the structure of a network. Finally, it has 
a built-in validation procedure for verifying the accuracy 
of saved activations, ensuring its robustness for novel 
architectures. We envision TorchLens being useful not 
only for streamlining analysis pipelines, but also for 
model prototyping and visualization, and as a 
pedagogical tool for teaching deep learning concepts. 

Implementation and User Interface 

TorchLens extracts the results of intermediate DNN 
operations by transiently decorating all PyTorch 
functions that return a tensor such that information 
about the inputs and outputs of that function call are 
logged. Unlike feature extraction approaches involving 
attaching forward hooks to PyTorch modules, this 
approach can save the results of operations that are not 
linked to PyTorch modules, and unlike approaches 
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involving symbolic tracing, it works for dynamic 
computational graphs (e.g., recurrent networks with 
varying numbers of loops), not just static graphs.  

The core functionality of TorchLens is provided by a 
main user-facing function, get_model_activations, 
which takes as input a PyTorch model object (no 
modifications necessary) and desired model input, and 
returns a data structure containing both the hidden 
layer activations for the model (either all layers or a 
selected subset), and metadata about the model as a 
whole and about each individual layer, yielding a full 
description of the model’s computational graph (Figure 
1). Additionally, the user can also specify for 
TorchLens to automatically generate a visualization of 
the model’s computational graph (Figure 2) in order to 
understand how each layer fits into the broader 
structure of the network. TorchLens includes full 
support for recurrent networks, including visualizing 
them in both rolled and unrolled format (Figure 3).  

 
Figure 1: The user interface for get_model_activations 

           
Figure 2: TorchLens can automatically visualize a 
network, illustrating its structure and providing useful 
metadata for layer selection. 

 
Figure 3: TorchLens can visualize recurrent DNNs in 
both rolled and unrolled format. ‘ 
 
TorchLens includes a built-in function for validating the 
accuracy of saved activations, intended to ensure its 
robustness for new architectures that may arise. 
Specifically, it re-runs the model’s forward pass starting 
from the saved activations at each layer, and verifies 
that the resulting model output matches the known 
ground-truth output. With this procedure, TorchLens 
has been validated on over 800 image, video, audio, 
and language models, including feedforward, recurrent, 
and transformer architectures.  
 
Finally, TorchLens includes functionality for profiling a 
model, including information about the memory size of 
saved tensors and model parameters, and the 
execution time for each step.  
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